Основы газопламенной сварки

Газопламенной сваркой металлов называют процесс, при котором плавление основного и присадочного материалов происходит в пламени открытой горелки. Поддержание пламени горелки осуществляют подачей одного или нескольких горючих газов или жидкостей в смеси с кислородом. И хотя газопламенная сварка не позволяет достичь той же скорости и простоты, как дуговая сварка, многие отдают ей предпочтение из-за больше мобильности и универсальности. При газовой сварке происходит сплавление двух заготовок с образованием сварного шва, который после остывания имеет такую же прочность, как исходный металл. Металл, соприкасаясь с пламенем и   окружающими   воздухом,   подвергается структурным изменениям, характер которых зависит от свойств самого металла и режимов газопламенной обработки. При газопламенной обработке происходит изменение структуры металла, содержания в нем примесей и легирующих добавок, обогащение кислородом и другими газами, что, в свою очередь, может вызывать окислительные процессы.

В результате плавления металла под воздействием пламени образуется жидкая сварочная ванна, внутри которой происходят сложные физические и химические процессы. Одним из таких процессов является образование оксида железа (FeO), который реагирует с примесями, содержащимися в металле и в первую очередь с кремнием и марганцем. При этом вредные примеси, содержащиеся в сварочной ванне, частично выводятся в сварочный шлак, а частично испаряются в атмосферу в виде газов. Для защиты сварочной ванны от атмосферного воздействия применяют те же методы, что и при дуговой сварке в первую очередь флюсы. Расплавленные флюсы вместе с вредными примесями образуют на поверхности сварочной ванны пленку, которая предохраняет жидкий металл от контакта с атмосферным воздухом и газами, содержащимися в пламени горелки, а остывая, превращается в корку шлака.

Газопламенная обработка металла, выполняемая при газовой сварке, способствует повышению температуры основного и присадочного материалов, достаточной для плавления металлов в пределах границ раздела со сварочной ванной. В результате этого в сварочной ванне присутствуют два вида металлов (основной и присадочный), которые перемешиваются между собой, а под действием флюсов и газов, содержащихся в пламени и атмосферном воздухе, взаимодействуют с ними, изменяя свои свойства и состав. По мере удаления от эпицентра пламени температура металла снижается и возникают процессы кристаллизации, образуя сварочный шов. При этом структура металла шва имеет вытянутые укрупненные и направленные к центру кристаллы. Рассмотрим же более подробно процессы, происходящие в зоне действия открытого пламени горелки. 

Сварочное пламя

Сварочное пламя образуется в результате сгорания горючих газов или паров горючих жидкостей в смеси с техническим кислородом. При этом пламя имеет сложную структуру и строение, которое показано на рис.1. Качество газовой сварки во многом зависит от правильности регулировки пламени, которое сварщик выставляет «на глаз» по форме и цвету. Поэтому очень важно знать строение и структуру пламени газовой горелки, чтобы учитывать это в повседневной работе. Форму, цвет и структуру пламени горелки меняют соотношением  ацетилена и кислорода, подаваемых в зону горения. В качестве примера рассмотрим ацетилено-кислородное пламя.

Ядро пламени имеет форму цилиндра с заостренным концом, вокруг которого расположена ярко светящаяся оболочка. Длина ядра пламени регулируется скоростью подачи газовой смеси и ее качественным составом. Диаметр ядра зависит от размеров мундштука и расхода горючей смеси.

Строение пламени меняется при изменении соотношения смеси и может быть: нормальным, науглероженным и окислительным (рис.2).

Нормальное пламя получается, когда на один объем горючего газа подается один объем кислорода. Если в качестве горючего газа принят ацетилен, то процесс его нормального сгорания можно записать в следующем виде: С2Н2 -Ю2 = 2СО+ Н2.

Составляющие ацетилено-кислородного пламени Разновидности ацетилено-кислородного пламени
Рис. 1. Составляющие ацетилено-кислородного пламени: 1 — ядро; 2 — восстановительная зона; 3 — факел пламени  Рис. 2. Разновидности ацетилено-кислородного пламени: А — нормальное; Б — науглераживающее; В — окислительное

При этом продукты неполного сгорания догорают за счет кислорода, присутствующего в атмосферном воздухе, по следующей реакции: 2СО +Н, + 1,50., = 2С02 + Н70. Так как абсолютно чистых веществ в природе не бывает и кислород содержит в себе некоторое количество примесей, то нормальное пламя получается при некотором его повышенном значении, то есть при соотношении ацетилена и кислорода, равном 1,1 -1,2. Ядро нормального пламени светлое со слегка затемненной восстановительной зоной и факелом. По форме ядро пламени напоминает цилиндр с четкими очертаниями и закругленным концом. Диаметр цилиндра зависит от размера мундштука сварочной горелки, а длина - определяется скоростью истечения газовой смеси. Вокруг ядра пламени размещается светлая оболочка, в которой происходит сгорание раскаленных частиц углерода. При высокой скорости подачи газа пламя способствует сгоранию металла и выдуванию его из сварочной ванны. Малая скорость подачи газов чревата обратными ударами и хлопками.

Восстановительная зона пламени имеет более темный цвет и располагается в пространстве в пределах 20 мм от конца ядра. Температура пламени в этой зоне может достигать 3150°С (при сгорании ацетилена). Размер восстановительной зоны зависит от номера сварочного мундштука. При помощи этой зоны пламени нагревают метал, плавят его и ведут сварку. Остальная часть пламени, расположенная за восстановительной зоной, состоящая из углекислого газа, паров воды и азота, имеет значительно меньшую температуру.

Науглероженное пламя получается, когда соотношение ацетилена и кислорода превышает указанное соотношение, то есть становится больше значения 1,1. Теоретически науглероженное пламя получается, когда в горелку подается 0,95 объема кислорода и менее. В этом случае ядро пламени увеличивается в объеме и теряет свои очертания. Недостаток кислорода в таком пламени приводит к неполному его сгоранию, и оно начинает коптить. Избыток ацетилена в науглероженном пламени приводит к его разложению на углерод и водород. Углерод из пламени переходит в металл, науглераживая его. Обычно науглероженное пламя применяют для сварки алюминия и наплавке твердых сплавов.

Восстановительная зона науглероженного пламени светлая и практически сливается с ядром. Температура такого пламени ниже, поэтому работать с ним более тяжело. Для перевода пламени в нормальное состояние увеличивают подачу кислорода или снижают подачу ацетилена.

Окислительное пламя получается при недостатке ацетилена, то есть соотношение ацетилен: кислород становится меньше 1,1. Практически окислительное пламя получается при объеме кислорода, превышающем в 1,3 объем ацетилена. Ядро такого пламени укорачивается и заостряется, а его края становятся расплывчатыми, цвет бледнеет. Температура такого пламени выше температуры нормального. Избыточный кислород окисляет железо и примеси, находящиеся в стали, что в конечном итоге приводит к хрупкости сварочного шва, пористости его структуры, обедненной марганцем и кремнием. Поэтому при сварке сталей окислительным пламенем пользуются присадочной проволокой с повышенным содержанием этих элементов, являющихся раскислителями. Самая высокая температура нормального пламени достигается в восстановительной зоне.

Примерный химический состав нормального ацетилено-кислородного пламени приведен в таблице 1. Нужно отметить, что ацетилено-кислородная смесь дает самую высокую температуру пламени. Изменение горючих газов несколько снижает температуру пламени и распределение ее по объему. Графическая зависимость изменения температур метан-кислородного и пропан-бутан-кислородного пламени представлена на рис.3.

Таблица 1. Химический состав нормального ацетилено-кислородного пламени

Часть пламени Содержание по сбьёму%
СО Н2 CО2 Н2О N2 О2 Прочие газы
Вблизи конца ядра 60 31 - - 8 - 1
В конце восстановительной зоны 33 15 9 6 33 - 4
Всредней части факела 3,7 2,5 22 2,6 58 8 3,2
Вблизи конца факела - - 8 2,2 74 15 0,8

Динамика роста температур метан-кислородного (А) и пропан-бутан-кислородного пламени (Б)

Рис. 3.  Динамика роста температур метан-кислородного (А) и пропан-бутан-кислородного пламени (Б): 1 — ядро; 2 — восстановительная зона; 3 — факел; 4 — свариваемый металл; L — длина ядра 

Значительный объем тепла, сконцентрированного в пламени газовой горелки, рассеивается в окружающую среду, поэтому его коэффициент полезного действия (К.П.Д.) низок и практически не превышает 7%. Расход энергии пламени при газопламенной обработке приведен в таблице 2.

Распределение энергии пламени Количество, %
Количество тепла, раходуемого на плавление металла и поддержание режима сварочного процесса 6-7
Потери тепла:
- от неполноты сгорания 55-63
- с отходящими газами 13-15
- на излучение и конвекцию 9-10
- на нагрев околсшовной зоны 15-18
- на искрообразование 1-2

Металлургические процессы в сварочной ванне при ее газопламенной обработке, а также в прилегающей к ней зоне имеют довольно сложный характер и несколько отличаются от металлургических процессов, происходящих при дуговой сварке. Это обусловлено тем, что расплавленный металл при его газопламенной обработке взаимодействует с газами, поддерживающими процесс горения. В зависимости от характера пламени, который меняет соотношение газов, изменяются и металлургические процессы.

При сварке нормальным пламенем, когда количество поступающих в зону сварки газов регламентировано, происходят в основном восстановительные реакции:

FeO + СО = Fe + СО2,     и     FeO + Н2 = Fe + Н2О

Кроме восстановительных реакций оксидов железа аналогичные процессы происходят и с другими оксидами, находящимися в сварочной ванне.

При сварке окислительным пламенем происходят реакции окисления железа и других элементов, присутствующих в сварочной ванне, а образующиеся при этом оксиды железа могут окислять углерод, кремний и марганец.

Сварка науглероженным пламенем способствует насыщению металла углеродом, что влечет за собой увеличение прочностных характеристик сварочного шва со снижением его пластических свойств.

Материалы для газопламенной сварки

Кислород

Пламя, обладающее высокой температурой, необходимое для газопламенной сварки, образуется при сгорании горючих газов или паров в смеси с техническим кислородом. При нормальных условиях кислород представляет собой газ без цвета, запаха и вкуса. Но при низких температурах газообразный кислород может перейти в жидкое состояние и даже превратиться в твердое вещество. Сам кислород не токсичен, не горит, но активно поддерживает горение других веществ, при котором выделяется большое количество тепла.

Соединения кислорода с горючими веществами в большой концентрации может привести к воспламенению и даже взрыву при наличии открытого огня или искры, а в сжатом состоянии при контакте с парами масел, жиров и других горючих веществ — к самовоспламенению. Получают технический кислород из атмосферного воздуха или электролизом воды. Основные физические свойства кислорода приведены в таблице 1.

Хранение и транспортировка жидкого кислорода производится в специальных транспортных резервуарах, имеющих хорошую тепловую изоляцию. К потребителю кислород поступает в баллонах под давлением, создаваемым при помощи компрессоров. Согласно ГОСТ 949-73 давление кислорода в баллонах должно быть 15±0,5 МПа или 20±0,1 МПа. При температуре от -50 до +30°С давление в баллонах должно соответствовать величинам, приведенным в таблице 2.

Хранение и транспортировка баллонов с жидким кислородом при температурах выше +60°С недопустимо.

Таблица 1. Основные физические свойства кислорода

Показатель Параметры
Молекулярная масса 32
Масса 1м3 при 0°С и давлении760ммрт. ст.,кг 1,43
То же при 20°С и давлении7 60 мм рт. ст., кг 1,33
Критическая температура, °С -118,8
Температура кипения при 760 мм рт. ст., °С -182,97
Критическое давление кгс/см2 51,35
Масса 1л жидкости кислорода прои -182,97°С и760ммрт. ст.кг 1,13
Количество кислорода, получаемого из 1л жидкого,л 850
Температура плавления при 760 ммрт. ст.,°С -218,4

Примечание: критическая температура — это наивысшая температура превращения газа в жидкость. Необходимое для этого давление называется также критическим.

Таблица 2. Величины давления в баллонах при температурах от -50 до +30°С

Температура газа, °С Давление в баллоне при
первоначальном давлении 15Мпа ±0, 5 при20°С
Давление в баллоне при
первоначальном давлении 20Мпа ±0,1 при20°С
-50 9,3 12,3
-40 10,2 13,5
-30 11,1 14,6
-20 11,9 15,8
-10 12,7 16,9
0 13,5 17,9
+10 14,3 19,0
+20 15,0 20,0
+30 15,7 21,0

Ацетилен

Ацетилен (С2Н2) - химическое соединение углерода и водорода, в нормальном состоянии представляющее собой бесцветный горючий газ с резким запахом. Ацетилен легче воздуха и при температуре 20°С один его м³ имеет массу 1,09 кг. Низкая температура ацетилена (240 - 630°С) делает этот газ взрывоопасным в соединении с кислородом. Так, при атмосферном давлении смесь ацетилена с воздухом становится взрывоопасной при содержании ацетилена 2,2%. Ацетилен токсичен и при вдыхании его вызывает головокружение, тошноту и даже отравление.

Сгорание ацетилена в смеси с техническим кислородом сопровождается высокой температурой, достигающей 3200°С. Основные физические свойства ацетилена приведены в таблице 3.

Технический ацетилен получают двумя способами:

Из карбида кальция действием на него водой в специальных ацетиленовых генераторах.
Из углеводородных продуктов, содержащихся в природных газах, нефти и торфосланцах.

В сварочных работах, выполняемых на строительных площадках, в условиях мелких мастерских и т.д. большее распространение получил первый способ. Однако в промышленном производстве все большее распространение получает второй способ, как более прогрессивный и рентабельный.

Газообразный ацетилен может растворяться в таких жидкостях, как вода, бензол, бензин, но чаще всего его растворяют в ацетоне.

Поэтому растворенным называют ацетилен, находящийся в баллоне, заполненном пористой массой, пропитанной ацетоном. При наполнении такие баллоны искусственно охлаждают. При открывании вентиля на баллоне ацетилен начинает выделяться из ацетона в виде газа. Растворение ацетилена применяют для его длительного хранения и транспортировки, так как в жидком и твердом состоянии он взрывоопасен.

Таблица 3. Физические свойства ацетилена

Показатель Величина показателя
Молекулярная масса 26
Масса 1м³ при 0ºС и давлении 760 мм рт. ст. ,кг 1,17
Тоже при 20°С 1,09
Критическая температура, °С 35,9
Критическое давление кгс/см2 61,6
Температура кипения при 760 ммрт. ст., °С -81,8
Температура затвердевания при 7 60 мм рт. ст.,°С -85

 

Карбид кальция

Карбид кальция - кристаллическое вещество (СаС2) темно-серого или темно-коричневого цвета с удельным весом от 2,3 до 2,53 г/см³. При взаимодействии с парами воды, находящимися в атмосферном воздухе, имеет характерный (чесночный) запах. При взаимодействии с водой карбид кальция разлагается с образованием ацетилена и гашеной извести. Из 1 кг химически чистого карбида кальция теоретически можно получить 372 дм³ ацетилена, однако наличие примесей снижает этот показатель до 280 дм³. Процесс разложения карбида кальция в воде происходит по следующей реакции:

СаС2 + Н2О = С2Н2 + Са(ОН)

Карбидная пыль при смачивании водой разлагается почти мгновенно, поэтому применять ее в ацетиленовых генераторах невозможно. Для этого используют кусковый карбид кальция, загружая им ацетиленовый аппарат. В зависимости от размеров кусков и сортности карбида кальция получают фактический выход ацетилена, отраженный в таблице 4.

Таблица 4. Выход ацетилена и карбида кальция

Размеры куска, мм Условное обозначение размеров куска Выход ацетилена (не менее), л/кг
1 сорт 2 сорт
2-8 2/8 255 235
8-15 8/15 265 245
15-25 15/25 275 255
25-80 25/80 285 265
Смешанных размеров - 275 265

Продолжительность разложения карбида кальция зависит от его грануляции и температуры, при которой происходит разложение. Для охлаждения ацетилена при разложении карбида кальция берут от 5 до 20 дм3 воды на 1 кг карбида кальция. Кроме того, иногда применяют «сухой» способ разложения , когда на 1 кг мелко раздробленного карбида кальция в генератор подают 0,2 — 1 дм³ воды.

Барабаны с карбидом кальция должны сохраняться в помещениях, которые отвечают следующим условиям:

помещение должно быть закрытым, сухим, построенным из негорючих материалов, защищенным от попадания влаги, хорошо проветриваться и иметь легкую кровлю, которую периодически проверяют на целостность.
в помещении не должно быть водопровода, канализации, а также водяного и парового отопления;
уровень пола в помещении должен быть на 0,2 м выше отметки наружной планировки;
помещение должно оборудоваться средствами противопожарной защиты.

Барабаны с карбидом кальция могут складироваться как в горизонтальном, так и в вертикальном положении. Помещения, где складируется карбид кальция, должны оборудоваться средствами механизации. Пустая тара из-под карбида кальция должна сохраняться в специальных местах вне производственных помещений.

Запрещается складировать карбид кальция в подвалах и местах, где существует угроза затопления, нельзя сохранять открытые или поврежденные барабаны с карбидом кальция. Открывать барабаны с карбидом кальция следует латунным зубилом и молотком, а запаянные барабаны - специальным режущим приспособлением. Место реза должно предварительно смазываться жировой смазкой слоем от 3 до 5 мм, что предотвращает появление искр. Открывать барабаны, развешивать карбид кальция, отсеивать мелкие фракции и пыль нужно в отдельных специальных помещениях. Просыпанный карбид кальция следует тщательно убрать.

Открытые или не полностью использованные барабаны с карбидом кальция закрывают водонепроницаемыми крышками. Открытым может быть только один барабан. В случае возникновения пожара в помещении, где хранится карбид кальция, нельзя пользоваться для тушения огня водой.

Пропан-бутановые смеси

Пропан-бутановые смеси состоят из пропана (C3H8) с примесью бутана (С4Н10) в количестве от 5 до 30%. Их получают при переработке нефти или добыче природного газа. Для сварочных работ эти смеси поставляется в баллонах в сжиженном состоянии. Из сжиженного состояния пропан-бутановая смесь переходит в газообразное при температуре -40°С при нормальном атмосферном давлении или при нормальной температуре, но при пониженном давлении. Условия перехода пропана и бутана в жидкое состояние отражены в таблице 5.

Таблица 5. Переход пропана и бутана в жидкое состояние

Температра, °С Давление, при котором газ переходит в жидкое состояние, кг/см2
Пропан Бутан
-20 2,7 0,45
110 3,7 0,68
0 4,8 0,96
+10 6,4 1,5
+20 8,5 2,1
+40 14,3 3,9

Испарение 1 кг пропан-бутановой смеси освобождает до 0, 535 м³ паров, которые в смеси с кислородом образуют сварочное пламя. При работе с пропан-бутановыми смесями следует учитывать, что этот состав тяжелее воздуха, поэтому при утечках скапливается в низменных местах и углублениях.

При большой концентрации такой смеси в атмосферном воздухе она становится взрывоопасной. Для своевременного обнаружения таких скоплений в смесь добавляют специальное вещество, имеющее неприятный специфический запах. Баллоны, предназначенные для хранения и транспортировки пропан-бутановой смеси заполняют не полностью, так как, испаряясь, смесь создает большое давление, что может привести к разрушению баллона и взрыву.

Переход из жидкого состояния в газообразное происходит самопроизвольно в верхней части баллона. Температура пламени, образованного пропан-бутановой смесью с кислородом, ниже температуры ацетиленового пламени, поэтому для сварки сталей такая смесь используется редко. Большей частью такие смеси применяют при газовой резке и пайке или при сварке металлов с низкой температурой плавления.

 

Водород

Водород — представляет собой газ без цвета и запаха. Его получают в специальных генераторах воздействуя серной кислотой на железную стружку и цинк. Этот горючий газ в смеси с кислородом образует взрывчатую смесь, называемую гремучим газом. Хранят и транспортируют водород в сжиженном состоянии, в которое он переходит при температуре -253°С. Водород в газообразном состоянии легко проникает через любые неплотности, поэтому баллоны, трубопроводы и запорная арматура должны отвечать высоким требованиям герметичности. При сгорании водорода пламя практически не светится и не имеет четких границ.

Бензин и керосин

Бензин и керосин - представляют собой жидкости, получаемые при переработке нефти. При нормальной температуре и атмосферном давлении они легко испаряются и в газопламенной обработке металлов используются в виде паров. Для испарения бензина или керосинка горелки снабжают специальными испарителями или распылителями. Чаще всего эти жидкости используют для резки металлов, заменяя ацетилен. При этом вместо 1 м³ ацетилена расходуется 1,3 кг керосина.

Кроме этого для газопламенной обработки могут применять природный газ, нефтяной газ, окись углерода и т.д. Все эти газы в смеси с кислородом или атмосферным воздухом при определенном их соотношении образуют взрывоопасные смеси, что следует учитывать в процессе работы. Пределы взрываемости газов и паров горючих газов и жидкостей в смеси с воздухом и кислородом приведены в таблице 6.

Таблица 6. Пределы взрываемости газов, паров и жидкостей

Наименование газа Пределы взрываемости, выраженные в % объёме горючего газа
С воздухом С кислородом
Ацетилен 2,2-81,0 2,8-93,0
Водород 3,3-81,5 4,65-93,9
Окись углерода 11,4-77,5 15,5-93,9
Метан 4,8-16,7 5,0-59,2
Пропан 2,17-9,5 2,0-48,0
Бутан 1,55-8,4 1,3-47,0
Городской газ 3,8-24,8 10,0-73,6
Коксовый газ 7,0-21,0 -
Природньй газ 4,8-14,0 5,0-59,2
Нефтяной газ 3,5-16,3 -
Пары бензина 0,7-6,0 2,1-28,4
Пары керосина 1,4-5,5 -

Сварочная проволока и другие присадочные материалы

В качестве присадочных материалов при газопламенной сварке применяют сварочную проволоку или литые прутки, которые по своему химическому составу должны быть близкими к основному материалу. Нельзя в качестве присадочных материалов применять случайную проволоку, так как это скажется на качестве сварного соединения. Присадочные материалы должны отвечать следующим требованиям:

  • температура их плавления должна быть несколько меньше температуры плавления основного материала
  • химический состав должен соответствовать химическому составу основного материала
  • поверхность должна быть ровной и чистой, без окалины, ржавчины, масла и жировых отложений
  • плавление должно происходить ровно, без разбрызгиваний и испарений
  • после кристаллизации наплавленный металл должен обладать хорошей плотностью без раковин, пор, шлаковых включений и т.д.

Применение в качестве присадочного металла различных полосок недопустимо, так как это влечет за собой неравномерную ширину сварочного шва и его неоднородность, что сказывается на качестве сварного соединения. Вместо сварочной проволоки допускается применение пруткового материала, прошедшего калибровку. При газовой сварке цветных металлов и нержавеющих сталей в виде исключения допускается применение полосок, своим химическим составом сходных с основным металлом.

Стальная проволока, предназначенная для сварки, поставляется в бухтах с обязательной маркировкой в виде бирок, на которых указаны: марка провода, ее диаметр, покрытие и т.д. Низкоуглеродистая и легированная проволока может иметь омедненную поверхность, предназначенную для защиты от атмосферного воздействия. Размеры и масса мотков проволоки приведены в таблице 7.

Таблица 7. Размеры и масса сварочной проволоки

Диаметр проволоки, м Внутренний диаметр мотка, мм Масса мотка проволоки (неменее), кг
Из углеродистой стали Из легировнной стали Из высокорелегированной стали
0,3-0,8 150-350 2 2 1,5
1,0-1,2 250-400 15 10 6
1,4-2,0 250-600 20 15 8
2,5-3,0 400-700 30 20 10
4,0-6,0 500-700 30 20 10
6,5-8,8 500-700 30 20 15

Для сварки цветных металлов промышленность выпускает сварочную проволоку с соответствующим химическим составом. Так, проволока для сварки алюминия и его сплавов выпускается диаметром от 0,8 до 12,0 мм. Она может быть тянутой или прессованной. Поставляется в бухтах, которые упаковываются во влагонепроницаемые пакеты. К каждой бухте крепится бирка, на которой указывают изготовителя, номер упаковки, условное обозначение проволоки, масса мотка и предупреждение: «Боится сырости и ударов». Химический состав проволоки должен соответствовать свариваемому сплаву.

Проволока на медной основе выпускается в бухтах и прутками. Она может быть в отожженном (мягком) и в твердом состояниях. Предусматривается следующая маркировка проволоки на медной основе:

  • Ml — проволока для сварки неответственных конструкций на основе меди;
  • М1р, МЗр — проволока для газовой сварки медных конструкций общего назначения;
  • MCpl  —  для    сварки    ответственных электротехнических конструкций;
  • JI63 — для газофлюсовой сварки латуни;
  • JIO60-1 — для газофлюсовой сварки латуни, легированной оловом;
  • ЛКБО62-0,2-0,04-0,5 — для газовой сварки и пайки меди и латуни без применения флюса;
  • ЛМц58-2, ЛЖМц59-1-1, ЛОК59-1-0,3 — для сварки латуни, пайки меди и меди с латунью.

Флюсы

Флюсы - в газопламенной сварке и пайке используют для раскисления расплавленного металла и удаления из сварочной ванны образующихся окислов и неметаллических включений. Под действием высоких температур флюсы связывают оксиды химическим путем с образованием легкоплавких соединений или растворяют их в сварочной ванне, а образующиеся при этом шлаки всплывают. Образовавшаяся на поверхности сварочной ванны шлаковая пленка защищает металл от окисления при контакте с атмосферным кислородом.

Состав флюсов подбирают в зависимости от химических реакций, преобладающих в сварочной ванне. Так, если в сварочной ванне преобладают основные оксиды, то используют кислые флюсы. Если же реакция сварочной ванны кислая (SiO, и др.), то флюс должен быть основным. Физические свойства наиболее часто применяемых флюсов приведены в таблице 8.

Флюсы вводят в сварочную ванну рукой, ложкой, составляют в виде паст, которые наносят на свариваемые кромки в виде газов, вводимых непосредственно в сварочное пламя и т.д.

Таблица 8. Физические свойства флюсов

Свойства  Вид флюса
В2О3 Na2B4O2 LiF KF NaF CaF2<.sub> LiCl KC1 NaCl
Темтература плавления °С 577 741 842 846 988 1375 606 678 800
Температура кипения °С - - 1676 1505 1695 - 1382 1417 1439
Теплота образования, ккал/маль 282 - 144,7 134 136 289 98 105, G 97,7
Плотность, г/см3 1,8 - 2,6 2,4 2,7 3,16 2,1 2,8 2,2

Ацетиленовые генераторы

Под ацетиленовым генератором понимают аппарат, служащий для получения ацетилена при разложении карбида кальция водой по следующей реакции: СаС, + 2Н20 - С2Н2 + Са(ОН). Каждый ацетиленовый аппарат должен иметь паспорт установленной формы, инструкцию по эксплуатации и сертификат безопасности.

Теоретически для разложения 1 кг карбида кальция требуется 0,562 л воды, но практически берут от 5 до 20 л воды, так как реакция проходит с большим выделением тепла.

Ацетиленовые генераторы, предназначенные для сварки и резки, могут отличаться конструктивно и классифицируются по следующим признакам:

  • по производительности — от 0,5 до 160 м³/час;
  • по давлению вырабатываемого ацетилена — низкого (до 10 кПа) и среднего (от 70 до 150 кПа) давления;
  • по способу перемещения — передвижные и стационарные;
  • по системе регулирования взаимодействия карбида кальция с водой — с количественным регулированием взаимодействующих веществ и повременным регулированием, то есть регулированием времени контакта.

В зависимости от взаимодействия карбида кальция с водой генераторы могут быть двух систем: «КВ» — «карбид в воду» и «ВК» — «вода в карбид». Возможно комбинирование двух систем, когда дозируют оба вещества.

Основные конструктивные схемы ацетиленовых аппаратов приведены на рис.1. Основными элементами аппарата являются:

  • газообразователь, в котором происходит разложение карбида кальция водой;
  • газосборник (газгольдер), предназначенный для сбора и хранения ацетилена;
  • предохранительное устройство, ограничивающее давление ацетилена в пределах установленной для данной конструкции нормы;
  • предохранительный затвор, который при обратном ударе, происходящем в горелке или резаке, не пропускает взрывную волну во внутрь генератора;
  • устройство, предназначенное для автоматической регулировки количества вырабатываемого ацетилена в зависимости от интенсивности его потребления.

Конструкции ацетиленовых генераторов регламентируются ГОСТ519-78, из которых каждый тип имеет свои достоинства и недостатки. На практике можно применить любой тип, если генератор находится в технически исправном состоянии, но наиболее предпочтительными являются генераторы комбинированной системы «вода на карбид».

Ацетиленовые генераторы (схемы) Ацетиленовый генератор среднего давления «АСП -10»

Рис. 1. Ацетиленовые генераторы (схемы): А — принцип зарядки - «карбид в воду»; Б —  «вода в карбид»; В — сухое разложение карбида; Г — принцип вытеснения; Д — комбинированного действия — «вода в карбид» и «вытеснение»; 1 — бункер с карбидом кальция; 2 — реторта; 3 — подача воды; 4 — газосборник; 5 — удаление осадка; 6 — отбор газа. 

Рис. 2. Ацетиленовый генератор среднего давления «АСП -10»: А — внешний вид; Б — схема; 1 — винт; 2 — коромысло; 3 — направляющие; 4 — крышка; 5 — пружина; 6 — мембрана; 7 — горловина; 8 — корзина для карбида кальция; 9 — клапан предохранительный; 10 — трубка; 11 — патрубок; 12 — вентиль; 13 — предохранительный затвор; 14 —16 — сливной штуцер; 15 — контрольная пробка; 17 — поддон; 18 — контрольный манометр. 

Ацетиленовый генератор АСП -10

В условиях домашних мастерских и строительных площадок чаще всего применяют передвижной ацетиленовый генератор типа АСП-10, имеющий производительность 1,25 м³/час (рис.2), основные технические характеристики которого приведены в таблице.

Ацетиленовый генератор АСП -10 представляет собой металлический цилиндр, состоящий из корпуса с крышкой 4 и мембраной 6, корзины 8, предназначенной для загрузки карбида кальция, предохранительного клапана 9, вентиля 12, предохранительного жидкостного затвора 13, сливного штуцера 14, контрольной пробки 15, сливного штуцера 16, поддона 17 и контрольного манометра 18.

В верхней части корпуса размещен газообразователь, в котором происходит разложение карбида кальция с выделением ацетилена. В средней части расположен вытеснитель, в котором находится воздушная подушка и вода, которая сообщается с водой в газообразователе в процессе работы генератора. В нижней части генератора расположен промыватель, в котором происходит охлаждение ацетилена и отделение его от образовавшейся извести. Газосборник, являющийся верхней частью промывателя, служит для накопления образовавшегося ацетилена.

Технические характеристики генератора АСП-10

Технические характеристики генератора АСП-10 Значение
Номинальное давление, Мпа 0,15
Разовая загрузка карбида кальция, кг 3,5
Время работы без перезарядки, ч 0,8
Размеры кусков карбида кальция, мм 25-80
Общая вместимость генератора, литров 50,6
Вместимость промывателя, литров 24,5
Вместимость газообразователя, литров 15,0
Вместимость вытеснителя, литров ИД
Количество заливаемой в генератор вода, литров 19,1
Габариты генератора, мм 420x380x960
Масса генератора (без загрузки), кг

21,3

Переносные ацетиленовые аппараты устанавливаются вне помещений, желательно под навесом. Стационарные аппараты, а также переносные, предназначенные для стационарной работы, должны устанавливаться в специальных помещениях и эксплуатироваться согласно требованиям «Правил техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов». Возле мест установки ацетиленовых генераторов должны вывешиваться предупредительные таблички. При минусовых температурах ацетиленовые генераторы устанавливают в утепленных будках.

Заправляют генератор в следующей последовательности. Через горловину 7 заливают необходимое количество воды, которая при достижении уровня переливной трубки 10 поступает в промыватель. Заполнение контролируют переливной пробкой 15. Карбид кальция загружают в металлическую решетчатую корзину 8, закрепляют поддон 17, устанавливают на место и прижимают металлической крышкой 4 с мембраной 6. Плотность прилегания крышки к корпусу генератора обеспечивается винтовым зажимом 1.

По мере разложения карбида кальция водой выделяемый в газообразователе ацетилен по трубке 10 поступает в промыватель, проходит сквозь слой воды, где охлаждается и очищается и через вентиль 12 по шлангу поступает на потребление.

Необходимое для сварки давление ацетилена поддерживается предохранительным затвором 13. Процесс разложения карбида кальция регулируется следующим образом. По мере разложения карбида кальция корзина опускается в воду вертикальным движением под действием вытеснителя. Когда давление ацетилена повышается, корзина с карбидом поднимается вверх под действием пружины и мембраны. При этом уровень погружения карбида в воду снижается и,   как  следствие,   снижается   количество вырабатываемого ацетилена, что, в свою очередь, приводит к снижению давления. Если давление падает ниже допустимого, усилием пружины корзина опускается в воду, и автоматически увеличивается количество вырабатываемого ацетилена и давление начинает повышаться.

Кроме того, давление в аппарате регулируется уровнем воды, находящейся в газообразователе. По мере выработки ацетилена, когда давление повышается, вода под его действием переливается в вытеснитель, ее уровень снижается и количество вырабатываемого ацетилена снижается. Если давление ацетилена падает, вода из вытеснителя поднимается вверх, смачивая карбид кальция, и количество вырабатываемого ацетилена вновь возрастает. Таким образом, при помощи указанных двух механизмов поддерживается необходимое количество вырабатываемого ацетилена и его рабочее давление.

Технические характеристики предохранительных затворов

Предохранительные затворы представляют собой защитные устройства. Основная функция предохранительного затвора состоит в защите ацетиленовых генераторов и трубопроводов от проникновения в них пламени при обратном ударе. Кроме того, предохранительный затвор препятствует проникновению в генератор кислорода из горелки или резака, что может привести к взрыву. Под обратным ударом понимают воспламенение горючей смеси в каналах горелки или резака и распространение пламени по шлангу горючего газа. Горящая смесь, образовавшаяся при обратном ударе, устремляется по ацетиленовому каналу горелки или резака в шланг и при отсутствии предохранительного затвора - в ацетиленовый аппарат, что может привести к его взрыву. Это отрицательное явление возникает в случае, если скорость истечения горючей смеси станет меньше скорости ее сгорания, а также от перегрева и засорения канала мундштука горелки или резака.

Предохранительные затворы могут быть двух типов — водяные (жидкостные) и сухие (механические). Внешний вид водяного затвора ЗСГ — 1,25, устанавливаемого на наиболее распространенных ацетиленовых генераторах АСП-10, показан на рис.3, а на рис. 4 показана принципиальная схема работы данного вида оборудования для низкого давления ацетилена.

Водяной затвор ЗСГ-425-4 Водяной предохранительный затвор низкого давления для ацетилена
Рис. 3. Водяной затвор ЗСГ-425-4: А — от генератора; Б — к горелке; 1 — ниппель; 2 — пламенепреградитель; 3 — корпус; 4 — гуммированный клапан; 5 — колпачок; 6 — штуцер; 7 — пробка; 8 — рассекатель; 9 — контольная пробка  Рис. 4. Водяной предохранительный затвор низкого давления для ацетилена: А — при нормальной работе; Б — в случае обратного удара; 1 — вентиль; 2 — трубка газоподводящая; 3 — воронка; 4 — выходной ниппель; 5 — контрольный кран; 6 — корпус; 7 — дно затвора; 8 — диск-рассекатель; 9 — резиновая прокладка; 10 — предохранительная трубка.

Затвор состоит из цилиндрического корпуса с верхним и нижним цилиндрическими днищами. В нижнее днище затвора ввернут обратный клапан, состоящий из корпуса, обрезиненного клапана и колпачка, ограничивающего подъем клапана. Внутри корпуса (в верхней части затвора) расположен пламяпреградитель, а в нижней — рассекатель. Корпус затвора заполняют водой до уровня контрольного крана. Ацетилен, подводящийся по трубке, проходит через обратный клапан, а в верхней части корпуса - через отражатель и отводится к месту потребления через расходный кран.

При обратном ударе ацетилено-кислородного пламени давлением воды клапан прижимается к седлу и не допускает проникновения ацетилена из генератора в затвор.

Пламя гасится столбом воды. После каждого обратного удара из затвора выбрасывается часть воды, которую необходимо дополнять до уровня контрольного крана. Это необходимо делать после каждого обратного удара, так как при недостатке воды ацетилен через затвор будет выходить в атмосферу.

Недостатком водяных предохранительных затворов является замерзание воды при работе на морозе. Поэтому в зимнее время их рекомендуется заливать морозоустойчивыми водными смесями этиленгликоля или глицерина. Приготавливают эти растворы смешиванием двух объемов этиленгликоля или глицерина с одним объемом воды. Температура замерзания таких жидкостей соответственно составляет -75°С и -36°С. Иногда применяют солевые растворы (NaCl и CaCL), но они вызывают коррозию стенок затвора, что накладывает ограничение на их использование.

Газовые баллоны и защитная газовая аппаратура

Защитная газовая аппаратура применяется для защиты зоны сварочной дуги инертным или другими газами, об особенностях которых мы уже говорили. Состоит такая аппаратура из баллонов, осушителей и подогревателей газа, газовых смесителей, электромагнитных клапанов, расходомеров, регуляторов давления.

Редуктор давления

Регулятор давления представляет собой редуктор с манометром и предназначен для снижения давления защитного газа, автоматически поддерживая его в заданных пределах. Если защитным газом служит углекислый газ, то применяют регуляторы, устанавливаемые на кислородных баллонах (ДКД-8-65) или углекислотные регуляторы (У-30). При применении для защиты сварочной ванны инертного газа пользуются специальными регуляторами типа АР-150, АР-40, АР-10.

Осушители, подогреватели газа и расходометры

Осушители газа устраняют наличие влаги, всегда имеющейся в баллоне с защитным газом. Подогреватели газа предназначены для подогрева поступающего из баллона защитного газа. Расходомеры применяют для измерения расхода газа при сварке.

Электромагнитные газовые клапаны

Электромагнитные газовые клапаны  предназначены для автоматического управления подачей газа. Состоит такой клапан из корпуса 1, плунжера 2, электромагнита 3, входного 4 и выходного 5 штуцеров. При подаче напряжения питания на катушку электромагнита якорь электромагнитного клапана втягивается, поднимая плунжер 2. При этом газ поступает из входного штуцера в выходной и далее в рабочую горелку автомата. При отключении напряжения питания плунжер под действием пружины возвращается в первоначальное положение, перекрывая проход между входным и выходным штуцерами, в результате чего подача газа прекращается.

Клапан электромагнитный

Клапан электромагнитный: 1 — корпус; 2 — плунжер; 3 — электромагнит; 4—5 — входной и выходной штуцеры

Включение электромагнитного клапана блокируется с пусковой кнопкой полуавтомата, обеспечивая продувку газовых каналов и подготовку защитной среды перед зажиганием сварочной дуги, а также сохранение ее после гашения дуги до полного остывания металла. 

Баллоны для сжатых и сжиженных газов

Баллоны для хранения и транспортировки сжатых, сжиженных и растворенных газов регламентируются требованиями ГОСТ 949-73. Вместимость баллонов может быть различной и колеблется от 0,4 до 55 дм³. Их изготавливают из бесшовных углеродистых или легированных труб под условное давление до 20 МПа (200 кг с/м²). Для передвижных сварочных установок наибольшее распространение получили баллоны емкостью 40 дм³, размеры которых отражены в таблице 1.

На сферической части баллона ставится клеймо, на котором паспортные данные: товарный знак изготовителя, номер баллона, дата изготовления и год следующего испытания, масса порожнего баллона и его емкость. Периодические испытания баллонов производятся не реже, чем каждые пять лет. В зависимости от газа, для которого предназначен баллон, его окраска и надписи отличаются. Кроме того, на баллоне должна стоять надпись, указывающая, под какой газ он предназначен. Отличительная окраска баллонов приведена в таблице 2.

Таблица 1. Баллоны для передвижных сварочных установок

Показатель Данные показателя, мм
Наружный диаметр, мм 219
Толщина стенки, мм
Тип 100 и 150Л 5,2
Тип 150 и 200Л 7
Тип 200 9,3
Длина корпуса
Тип 100 и 150Л 1340
Тип150и200Л 1390
Масса, кг
Тип100и150Л 43,5
Тип 150 и 200Л 60

Примечание: Масса баллонов указана без вентилей, колпаков, колец и башмаков.

Таблица 2. Отличительная окраска баллонов

Газ Окраска баллонов Текст надписи Цвет надписи Цвет полосы
Азот Черный Азот Желый Коричневый
Аргон Серый Аргон Зеленый -
Ацетилен Белый Ацетилен Красный -
Бутилен Красный Бутилен Желтый Черный
Кислород Голубой Кислород Черный -
Метан Красный Метан Белый -
Природный газ Красный Природный газ Белый -
Пропан (бутан) Красный Пропан (бутан) Белый -
Углекислота Черный Углекислота Желтый -

Кислородные баллоны рассчитаны на хранение кислорода до 6000 дм³. Для того чтобы определить количество кислорода в баллоне, пользуются формулой:

Vk = VsPk.

Где: Vk — количество кислорода в баллоне; Vs — емкость баллона; Рк — давление кислорода. Нижняя часть баллона выполнена в виде башмаков, которые имеют двойную функцию: опирание баллона в вертикальном положении и защита нижней части от случайных ударов при транспортировке. Защитой верхней части баллона служит толстостенный стальной колпак. Хранят кислородные баллоны в вертикальном положении в специальных решетчатых навесах вдали от нефтепродуктов и других жировых элементов. Во время сварки баллон устанавливают вертикально и крепят к неподвижным опорам тросовыми хомутами или цепями. Транспортируют баллоны в горизонтальном положении в специальных деревянных контейнерах с резиновыми прокладками. Кислородные баллоны должны содержаться в чистоте, поэтому к ним нельзя касаться жирными руками или грязными рукавицами. Если при осмотре баллона обнаружены жирные пятна (особенно на его вентиле), то пользоваться им нельзя.

Перед сборкой сварочной схемы запорное устройство продувают, для чего производят кратковременный поворот маховика на небольшой угол. Во время продувки нужно стоять так, чтобы кислород не попал на человека или источник открытого огня.

Ацетиленовые баллоны изготавливают из цельнотянутых труб, но допускается их изготовление из сварных труб, из углеродистой или низколегированной стали. Баллоны заполняют специальной пористой массой (древесный уголь, пемза, инфузорная земля и т.д.), образующей микрополости, необходимые для безопасного хранения ацетилена. Массу в баллонах пропитывают ацетоном, в котором ацетилен растворяется и его хранение становится безопасным. При нормальных условиях в одном объеме ацетона растворяется 23 объема ацетилена, но в любом случае давление в ацетиленовом баллоне не должно превышать 1,9 МПа при 20°С. При расходовании ацетилена ацетон остается в баллоне и может использоваться для повторного растворения. Количество ацетилена при заправке определяют взвешиванием до и после заполнения. Чтобы снизить потери ацетона из баллона, ацетилен следует отбирать со скоростью не более 1700 дм³/ час.

Преимущество баллонов, заполненных ацетиленом, перед генераторами заключается в их большей безопасности и удобствах в эксплуатации. Ацетилен, потребляемый из баллона более чистый чем ацетилен, полученный в генераторе; он содержит меньше влаги, а давление перед горелкой или резаком большее.

Баллоны для пропан-бутана рассчитаны на максимальное давление 1,6 МПа, поэтому их изготавливают сварными из листовой углеродистой стали толщиной 3 мм и более. Наибольшее применение имеют баллоны емкостью 50 л (на 23 кг газа) с наружным диаметром 309 мм с толщиной стенки 4,5 мм и высотой 950 мм. Масса такого баллона составляет 35 кг, рабочее давление — 16 кгс/ см2.

Сварочные горелки и резаки для газопламенной сварки

Сварочные горелки, предназначенные для получения устойчивого пламени путем смешивания горючего газа с кислородом, являются одним из основных инструментов сварщика. Каждая горелка позволяет регулировать состав, мощность и форму сварочного пламени. Образующаяся в горелке смесь газов вытекает из канала мундштука и, сгорая, дает устойчивое сварочное пламя.

Различают несколько типов сварочных горелок, но все они имеют общие конструктивные особенности. Каждая горелка состоит из рукоятки с расположенными на ней запорно-регулировочными вентилями и набора сменных наконечников. На маховички вентилей наносят наименование газа (ацетилен или кислород) и стрелки, указывающие направление вращения при открывании и закрывании.

Все горелки по способу подачи горючего газа и кислорода в смесительную камеру классифицируют на: безынжекторные и инжекторные (рис. 1). По назначению горелки делят на: универсальные и специальные, по числу факелов на: однопламенные и многопламенные, по мощности: малой мощности (25 — 400 дм3/ч), средней мощности (400—2800 дм3/ч) и большой мощности (более 2800 дм3/ч).

Сварочные горелки

Рис. 1.  Сварочные горелки: А — инжекторная; Б — безынжекторная; 1— штуцер подачи кислорода; 2 — штуцер подачи горючей смеси; 3 — корпус горелки; 4 — смеситель; 5 — регулировочный вентиль; 6 — инжектор; 7 — наконечник; 8 — мундштук. 

Наибольшее применение получили инжекторные горелки, работающие на смеси ацетилена с кислородом. В этих горелках подачу горючего газа в смесительную камеру осуществляют подсосом его струей кислорода, подаваемого в горелку с большим давлением, чем горючий газ. Процесс подсоса горючего газа называется инжекцией и происходит следующим образом. Кислород под давлением поступает в горелку и через штуцер (рис. 1А) и  регулировочный вентиль 5 подается к инжектору. Выходя с большой скоростью из узкого канала инжекторного конуса, кислород создает значительное разрежение в камере и засасывает горючий газ, поступающий через ацетиленовые каналы горелки в камеру смесителя 4, где и образуется горючая смесь. По наконечнику 7 горючая смесь поступает к мундштуку 8, на выходе которого образуется сварочное пламя.

Схема смешивания безынжекторной горелки показана на рис. 1Б. В этом типе горелок горючий газ и кислород подают при примерно равном давлении в смесительную камеру, откуда после смешивания они поступают на наконечник горелки, образуя на выходе сварочное пламя.

Мундштуки горелок изготавливают из высокотеплопроводных материалов, используя для этого меди марки МЗ или хромистую бронзу. Для устойчивого горения и правильной формы пламени, поверхности выходного канала мундштука подвергают тщательной обработке. Все повреждения этого элемента горелки (заусенцы, вмятины, плохая чистота поверхности) способствуют отрыву пламени и обратным ударам. Выпускают 12 номеров сменных наконечников, отличающихся различным расходом кислорода и ацетилена. Номер наконечника выбирают в соответствии с толщиной свариваемого металла и требуемым удельным расходом ацетилена. Расход ацетилена для различных номеров наконечников приведен в таблице.

Расход ацетилена

Номер наконечника Расход газа, л/ч
Ацетилена (от и до) Кислорода (от и до)
000 5-10 6-11
00 10-25 11-28
0 24-60 28-65
1 50-125 55-135
2 120-240 130-260
3 230-430 430-750
4 400-700 430-750
5 600-1100 740-1200
6 1030-1750 1150-1950
7 1700-2800 1900-3100
8 2800-4500 3100-5000
9 4500-7000 47,00-8000

Различают четыре типа горелок: горелки микромощности (Г-1) снабжают наконечниками № 000 и 00; горелки малой мощности (Г-2) снабжают наконечниками № 0,1, 2, 3 и 4; горелки средней мощности, инжекторные, в комплект которых входит семь наконечников, горелки большой мощности, инжекторные.

Если сварщику приходится работать с разными горелками, нужно предусматривать соответствующий разъем шланга, для чего используются различные переходники и ниппели.

Кислородные резаки (рис. 2) — служат для газопламенной резки металлов. Они служат для смешивания горючего газа с кислородом, в результате чего образуется подогревающее пламя. Ручные резаки для газовой резки классифицируют последующим признакам:

  • по роду горючего газа, на котором они работают (ацетилен, газы-заменители, жидкие горючие вещества);
  • по принципу смешения горючего газа и кислорода — на инжекторные и безынжекторные;
  • по назначению — универсальные и специальные;
  • по виду резки — для разделительной, поверхностной, кислородно-флюсовой, копьевой.

В настоящее время широкое применение получили универсальные инжекторные резаки, позволяющие резать сталь толщиной от 3 до 300 мм. Принцип их устройства аналогичен принципу устройства сварочной горелки. Режущая часть состоит из дополнительной трубки для подачи режущего кислорода и вентиля для его регулировки. В мундштуке находится два концентрически расположенных отверстия для выхода подогревающего пламени и режущей струи. Газы в мундштук подают и регулируют с помощью соответствующих вентилей.

Специальные сварочные горелки служат для газопламенной обработки металлов (очистки, пайки, сварки термопластов, газопламенной наплавки и т.д.).

Кислородный резак Горелка для сварки термопластичных материалов
Рис. 2. Кислородный резак: р — режущая часть; n — подогревающая часть; 1 — наконечники; 2 — вентили; 3 — мундштуки. 

Рис. 3. Горелка для сварки термопластичных материалов: 1 — подача воздуха; 2 — подача пропан-бутана; 3 — вентили; 4 — смеситель; 5 — наконечник. 

Номенклатура таких горелок достаточно широка, поэтому в качестве примера остановимся на горелке для сварки термопластичных материалов (рис.3). При помощи таких горелок сваривают винипласт, полиэтилен, органические стекла и другие виды пластмасс толщиной до 25 мм. Теплоносителем в таких горелках является воздух в смеси с продуктами сгорания пропан-бутана. Сварка производится посредством присадочного прутка диаметром 3 — 5 мм. 

Сварочные рукава

Для подвода газа от баллона к горелке или резаку используют гибкие сварочные рукава с нитяным каркасом, изготовление которых регламентируется требованиями ГОСТа 9356-76. Такие рукава хорошо переносят перепад температур от -35°С до +70°С. Состоят такие рукава из внутреннего резинового слоя, хлопчатообумажной оплетки и наружного резинового слоя.

Сварочные рукава могут быть следующих типов:

  • тип I — для ацетилена   и городского газа, рассчитанные на рабочее давление не более 0,63 Мпа;
  • тип II — для жидкого топлива (бензина, керосина), рассчитанные на рабочее давление не более 0,63 МПа;
  • тип III — для кислорода, рассчитанные на рабочее давление не более 2 Мпа.

Внутренний диаметр рукавов может быть 9, 12 и 16 мм, а облегченных — 6,3 мм. Для того чтобы сварочные рукава можно было различить, применяют систему маркировки. Для этого по всей длине рукава проставляют тисненую надпись с обозначением типа рукава, его внутреннего диаметра и ГОСТа, регламентирующего качественные показатели. Кроме того, в маркировке рукава может стоять буквенный индекс, обозначающий климатический район, для которого он предназначен. Так, индекс «ХЛ» означает, что рукав предназначен для работы в районах с холодным климатом, а индекс «Т» — указывает на тропический климат. Цифровой индекс обычно проставляют перед словом ГОСТ.

Наружный слой рукавов имеет цвет в зависимости от вида газа, для которого он предназначен: синий — для кислорода; красный — для ацетилена; желтый — для жидкого топлива. Наружный цвет рукава не обязательно должен иметь расцветку, указывающую на вид газа. Для этого достаточно выполнить подкраску в местах маркировки. Подкраску наносят в виде цветных колец или полос. На кислородных рукавах с черным наружным слоем, предназначенных для работы во всех климатических районах, цветовую маркировку обычно не наносят.
При работе с газосварочным оборудованием нужно следить за тем, чтобы рукава не перегибались и не пережимались. При вынужденных изгибах рукава следует следить, чтобы радиус кривизны имел размер не менее, чем 10-ти кратный внутренний радиус рукава. В противном случае при перегибах внутреннее сечение рукава снижается, что меняет его пропускную способность.

Рукава следует содержать в чистоте, не допуская их механических повреждений. При всех повреждениях наружного слоя или хлопчатобумажной оплетки рукава отбраковываются, так как это влечет за собой возможность утечки газа. Для хранения рукава сворачивают кольцами диаметром не менее 1 м и хранят в сухом месте, куда не попадает солнечное излучение.

Рукава, используемые для газосварочных работ, должны отвечать следующим условиям. Общая длина рукавов должна быть: до 30 м, причем рукав должен иметь не более трех кусков, соединенных между собой двусторонними специальными ниппелями с дополнительным креплением хомутами. Минимальная длина участка Рукава, который подлежит соединению, должна быть не менее 3 м; до 40 м — допускается длина рукава только при монтажных работах; более 40 м допускается только в исключительных случаях с выпиской наряд-допуска должностным лицом, ответственным за производство сварочных работ.

Рукава должны надежно закрепляться на подсоединительных ниппелях горелок, резаков и редукторов стяжными хомутами. Рукава должны один раз в три месяца подвергаться гидравлическим испытаниям на прочность давлением, превышающим рабочее, на 25%. Рукава выдерживают под давлением не менее 10 минут. Вода, которой испытывают рукава, не должна иметь примесей масел и других жировых включений. При необходимости гидравлические испытания заменяют пневматическими. Для этого применяют воздух или азот, очищенные от пыли, масел и других включений.

Предохранительный клапан

Предохранительный клапан: 1 — штуцер; 2 — обратный клапан; 3 — пружина; 4 и 7 — пламерассекающие шайбы; 5 — корпус; 6 — теплопоглотитель; 8 — переходной ниппель; 9 — накидная гайка

Храниться рукава должны в помещении при температуре от -20°С до +25°С в бухтах, высота которых не должна превышать 1, 5 м или в расправленном виде. Расстояние от рукавов до обогревающих приборов должно быть не менее 1 м. Рукава, которые хранились при отрицательной температуре, перед работой нужно выдержать при комнатной температуре не менее 24 часов.

В процессе работы рукава должны быть защищены от действия высоких температур, искр, пламени, действия солнечных лучей, от попадания на них горюче-смазочных материалов и других веществ, разрушающих резину и нитяной каркас.

При сварочных работах запрещается:

  • соединять рукава отрезками гладких трубок;
  • продувать шланги для горючих газов кислородом, и наоборот, а также осуществлять их взаимную замену;
  • перегибать, скручивать, сплющивать и натягивать рукава, оставлять их незащищенными от любых повреждений, огня и т.д.;
  • допускать перекрещивание рукавов со стальными канатами, кабелями и электросварочными проводами;
  • применять рукава, которые имеют дефекты, а также обматывать их изоляционной лентой или другими подобными материалами. Поврежденные участки рукавов должны вырезаться, а их концы соединяться и закрепляться хомутами.

Для защиты кислородных рукавов от разрывов и загораний при обратных ударах в аппаратуре, работающей на жидком топливе, применяют предохранительные клапана. Техническая характеристика предохранительных клапанов приведена в таблице. 

Показатель Данные показателя
Рабочее давление кислорода, кг/см2 2-15
Перепад давления в клапане, кг/см2 1,2-20
Размеры:
-длина 80
-диаметр 24
Масса, кг 0,148

Способы и режимы газовой сварки

Газовая сварка — это сварка плавлением металла, который разогревают пламенем горелки. При нагреве кромки свариваемых заготовок расплавляются вместе с присадочным материалом, который дополнительно вводится в пламя горелки. После кристаллизации жидкого металла образуется сварочный шов. К преимуществам газовой сварки относится простота способа, несложность оборудования, отсутствие источника электрической энергии.

К недостаткам газовой сварки относится меньшая производительность, сложность механизации, большая зона нагрева и более низкие механические свойства сварных соединений, чем при дуговой сварке. Кроме того, к недостаткам газопламенной сварки относят низкий КПД теплотворной способности горючего газа, так как всего 6— 7% тепла, выделяемого при сгорании ацетилена, расходуется на сварку металла. Остальное тепло тратится на излучение и конвекцию, потери от неполноты сгорания газа, нагрев прилегающих к шву участков, разбрызгивание металла и т.д.

Во время газовой сварки в правой руке сварщик держит горелку, а в левой - присадочную проволоку. Пламя горелки направляют на свариваемый металл так, чтобы кромки находились в восстановительной зоне пламени на расстоянии 2—6 мм от конца ядра. Не следует касаться расплавленного металла концом ядра пламени, так как это вызывает науглероживание сварочной ванны. Конец присадочной проволоки должен находиться в восстановительной зоне или быть слегка погруженным в сварочную ванну.

Режимы газовой сварки

Режимы газовой сварки определяют:

  • мощностью сварочного пламени
  • углом наклона присадочного материала и мундштука горелки
  • диаметром присадочного материала
  • скоростью сварки.

Сварочное пламя должно обладать достаточной тепловой мощностью, которую выбирают в зависимости от толщины свариваемого металла и его физических свойств. Выбор режимов сварки целиком и полностью зависит от толщины свариваемых деталей.

Мощность сварочного пламени напрямую зависит от расхода горючего газа и для ацетиленовой сварки ее приближенно можно определить по формуле:

Vа = k•S

Где  Va — мощность пламени, определяема расходом ацетилена, л/час; S — толщина свариваемого материала, мм; к — коэффициент пропорциональности, величина которого зависит от вида стали.

К примеру, для низкоуглеродистой стали и чугуна к = 100 — 130, а для высокоуглеродистой стали к = 75 100. Для алюминия и его сплавов к = 100 — 15 для медных сплавов — 150 — 225. Изменяя тепловую мощность пламени, сварщик в довольно широк пределах может регулировать скорость нагрев расплавления металла, что является одним преимуществ газопламенной сварки.

Угол наклона мундштука сварочной горелки увеличивают с увеличением толщины свариваемого металла. Зависимость угла наклона для сварки сталей приведена на рис. 1. Если сваривают цветные металлы, теплопроводность которых выше стали, то угол наклона мундштука немного увеличивают.

Углы наклона мундштука горелки при сварке стали различной толщины

Рис. 1. Углы наклона мундштука горелки при сварке стали различной толщины 

Диаметр присадочного материала подбирают в зависимости от толщины свариваемых деталей и метода наложения шва. Обычно диаметр присадочной проволоки равен половине толщины свариваемого металла. Практически при толщине металла более 15 м присадочный материал берут диаметром 6—8 мм.

Скорость сварки является величиной, от зависящей толщины свариваемого металла и его свойств. Определяют скорость сварки по формуле:

V = А/S

Где А - коэффициент, зависящий от свойств материала и для сталей средней толщины равняется 12 — 15, S — толщина свариваемого металла, мм.

Способы газовой сварки

Способов наложения сварочного шва существует несколько. Их применение диктуется привычками сварщика и особенностями сварного соединения.

Левая сварка (рис. 2А) — является наиболее применяемым способом при газовой сварке металлов, толщиной 4—5 мм. При этом способе горелку перемещают справа налево, а присадочную проволоку перемещают впереди горелки. Сварочное пламя, направленное от шва, хорошо прогревает несваренный участок и присадочную проволоку. При малой толщине металла (менее 8 мм) горелку, перемещают только вдоль шва, а при толщине металла больше 8 мм выполняют дополнительные колебательные движения поперек оси шва. Присадочную проволоку концом погружают  сварочную ванну, перемешивая ее спирал образными движениями.

Левый способ хорош тем, что сварщик хорошо видит шов, что дает ему возможность обеспечить равномерность сварочного валика. Шов получает ровный и красивый. Мощность сварочного пламени: при левом способе сварки принимают в пределах 100 — 130 дм3 ацетилена в час на один мм толщи металла.

Правая сварка (рис. 2Б) считается более экономичной, так как пламя направлено непосредственно на шов. Это дает возможность сваривать металл большой толщины с уменьшенным углом раскрытия кромок. А так как при этом количество наплавленного металла снижается, то вероятность коробления деталей снижается. Горелка при этом способе перемещается слева направо, а присадочный материал передвигают вслед за горелкой. Так как пламя направлено на шов, то скорость его охлаждения снижается, металл одновременно подвергается термической обработке, что способствует повышению качества шва.

Схема левой (А) и правой (Б) сварки                     Сварка сквозным валиком
Рис. 2. Схема левой (А) и правой (Б) сварки  Рис. 3. Сварка сквозным валиком: А — от 2 до 6 мм; Б — от 6 до 12 мм; В — от 12 до 20 мм

Сварку сквозным валиком (двойным валиком) применяют при вертикальной сварке стыковых соединений сверху вниз (рис. 3). Для этого в нижней части стыка проплавляется сквозное отверстие и, постепенно поднимая пламя вверх, расплавляют верхнюю часть отверстия. Вводя присадочный материал, заваривают нижнюю часть отверстия. При сварке толстого металла  сварку ведут одновременно с двух сторон два сварщика.

Сварка ванночками (рис. 3А) заключается последовательном образовании ванночек расплавленного металла и вводе в них по несколько капель присадочного материала. Сварку ванночками; применяют для сваривания металла толщиной до 3 мм. При этом виде сварки каждая последующая; ванночка перекрывает предыдущую на 2/3 ее диаметра. Этот метод применяют при сварке тонких; листов и труб из низкоуглеродистых сталей, стыковых и угловых соединений при толщине деталей до 3 мм, добиваясь высокого качества сварочного шва. Для этого, расплавив ванночку диаметром 4—5 мм, сварщик вводит в нее конец присадочной проволоки и, расплавив ее небольшое количество, перемещает конец в восстановительную зону пламени, что позволяет снизить вероятность окисления металла. Мундштуком горелки выполняют движения, позволяющие образоваться соседней ванночке, которая должна перекрывать предыдущую на ⅓ диаметра. При этом ядро пламени не должно погружаться в ванночку, чтобы избежать науглероживания металла шва.

Сварку по отбортованным кромкам используют для сваривания металла толщиной до 2 — 3 мм. Это вид сварки применяется без присадочного металла, а только за счет колебательных и спиралеобразных движений горелки.

Сварка: А — ванночками; Б — по отборочным кромкам Сварка: А — вертикальных, Б — горизонтальных, В — потолочных швов
Рис. 4. Сварка: А — ванночками; Б — по отборочным кромкам  Рис. 5. Сварка: А — вертикальных, Б — горизонтальных, В — потолочных швов

Сварка при различных положениях шва. Сварка при нижнем положении шва обычно затруднений не вызывает. Вертикальные, потолочные и горизонтальные швы на вертикальной поверхности (рис. 5) имеют свои особенности и требуют навыка в работе.

Сварку вертикальных швов снизу вверх лучше выполнять левым способом. Горизонтальные швы на вертикальной плоскости выполняют правым способом. В этом случае поток газового пламени направлен на шов, не позволяя металлу растекаться из сварочной ванны. В отличие от обычного правого способа сварку ведут справа налево, создавая небольшой перекос сварочной ванны.

Потолочные швы тоже лучше вести правым способом, так как при этой методике конец присадочной проволоки и давление газового потока препятствуют стеканию жидкого металла вниз. 

Методика газовой сварки

Для начала сварочных работ требуется зажечь и отрегулировать пламя. Для этого поворачивают регулировочный винт на редукторе баллона с ацетиленом против часовой стрелки до тех пор, пока не исчезнет сопротивление этому вращению. Точно так же поступают и с кислородным редуктором. После этого открывают вентили обоих баллонов примерно на пол-оборота, а затем — вентили горелки. С помощью ручек регулировочных винтов устанавливают на манометрах давление, рекомендуемое для данного типа мундштука, а затем закрывают вентили горелки. После этого открывают ацетиленовый вентиль на пол-оборота и,  держа  зажигатель на расстоянии 25 мм от конца мундштука, зажигают струю ацетилена. При дымном пламени количество подаваемого ацетилена увеличивают, чтобы основание пламени приблизилось почти вплотную к мундштуку горелки.

Регулировку пламени горелки выполняют вентилями, расположенными на рукоятке. Для этого медленно открывают кислородный вентиль, добиваясь резко выраженного голубовато-белого ядра, расположенного на конце мундштука. После этого устанавливают пламя, необходимое для данного вида сварки. Нормальное пламя имеет светло-голубой цвет. Если подается избыток кислорода, то получится окислительное пламя с характерным остроконечным ядром и более коротким факелом.

Тренировку формирования линии сплавления следует выполнять на бракованной детали. Для этого, держа мундштук горелки под углом 60 — 70° к поверхности металла, на расстоянии, равном 2 мм, добиваются образования круглой сварочной ванны. При сварке толстого металла или металла, обладающего большой теплопроводностью, угол наклона мундштука должен быть больше, чем при сварке металла тонкого или с низкой теплопроводностью.

Распределение жидкого металла по шву, а также регулирование скорости плавления кромок и присадочного материала достигают соответствующим перемещением сварочного пламени по шву. Для этого круговыми движениями передвигают горелку вперед по направлению, которое указывает мундштук. Продолжая выполнять эти движения, перемещают сварочную ванну поперек шва, а когда ванна начинает слишком глубоко погружаться в металл, горелку перемещают вперед. Нужно следить за тем, чтобы сварочная ванна имела нужный размер и правильные очертания, в противном случае шов получится некрасивый. После правильно проложенного шва на обратной стороне стального листа образуется небольшое усиление, имеющее правильную форму.

Основным движением пламени горелки является перемещение ее вдоль кромок сварочного шва. Поперечные и круговые движения являются дополнительными и служат для регулирования скорости прогрева и расплавления кромок, способствуя образованию шва нужной формы. Основные способы перемещения сварочной горелки приведены на рис. 1.

Основные способы перемещения сварочной горелки

Рис. 1. Основные способы перемещения сварочной горелки: А — с незначительными колебаниями при сварке малых толщин; Б — полумесяцем; В — петлеобразно; Г — полумесяцем с задержкой вдоль шва.

Сварку стыковых соединений (рис. 2) начинают с конца шва. Для этого две металлические заготовки прижимают друг к другу так, чтобы расстояние между ними было равно 2 мм. Учитывая тепловую деформацию металла зазор в конце сварочного шва должен быть несколько большим, чем вначале. После этого выполняют прихваточные швы, размеры которых и расстояние между ними зависят от размеров свариваемых деталей. После прихватки приступают к наложению сварочного шва.

При правой сварке горелку ведут слева направо, а присадочную проволоку перемещают вслед за горелкой. Для этого берут в левую руку присадочный пруток, той же толщины, что и свариваемые детали, и нагревают начало шва до образования сварочной ванны.

Пламя направляют на конец проволоки и на сваренный участок шва. Наклоняют сварочную горелку так, чтобы конец мундштука был направлен вдоль шва и начинают формировать линию сплавления, одновременно вводя конец присадочного прутка в середину сварочной ванны, перемешивая металл круговыми движениями. Вынимая пруток из ванны, не следует выводить его конец из пламени, чтобы его температура не понизилась. В случаях прилипания прутка к сварочной ванне, нужно направить пламя непосредственно на пруток, а когда он расплавится, его извлекают круговыми движениями. Не следует пытаться выдергивать прилипший пруток силой, так как это может нарушить сварочную ванну. Прежде чем продолжить работу по наплавке сварочного валика, нужно убедиться в том, что металл в ванне полностью расплавлен.

Сварка стыковых соединений Сварка нахлесточных соединений
Рис. 2. Сварка стыковых соединений  Рис. 3. Сварка нахлесточных соединений

Начав сварку с одного конца, перемещают сварочную ванну и присадочный пруток вдоль линии шва, расплавляя свариваемые кромки деталей и присадочный пруток и накладывая ровный шов. Работу следует выполнять без перерыва, так как при этом происходит излишнее окисление сварочного шва.

Правую сварку применяют при толщине металла свыше 5 мм. Качество сварочного шва при этом виде сварки выше, так как тепло пламени рассеивается меньше, чем при левой сварке. Пламя одновременно отжигает наплавленный металл и замедляет его охлаждение. В этом случае угол раскрытия кромок можно уменьшить, особенно при больших толщинах.

Нахлесточные соединения (рис. 3) выполняют, уложив одну деталь на другую так, чтобы они перекрывали друг друга. Для того, чтобы свободный конец верхней детали не свисал, под него устанавливают подкладку из негорючего материала.

При этом добиваются такого положения, чтобы обе детали были строго горизонтальны. После этого в нужных местах делают прихватки (сначала в центре, а затем — по краям). После этого приступают к сварке по той же методике, что была приведена выше.

Соединения в тавро (рис. 4) выполняют после взаимной сборки деталей.

Сварка тавровых соединений Сварка вертикальными швами
Рис. 4. Сварка тавровых соединений  Рис. 5. Сварка вертикальными швами: А — сверху вниз; Б —В — снизу вверх  

Для этого одну заготовку укладывают строго горизонтально на несгораемых подкладках, а вторую устанавливают к ней под прямым углом. Если нет специального приспособления, удерживающего собранную конструкцию, то вторую деталь можно временно поддерживать плоскогубцами так, чтобы она была немного наклонена в сторону, противоположную от места сварки. Горелку для нанесения прихваточных швов подносят так, чтобы она была наклонена к горизонтальной плоскости на 50°, после чего накладывают прихваточные швы.

Первый прихваточный шов выполняют без присадочного прутка, добиваясь, чтобы соединение имело достаточную прочность. Остальные прихватки и сварочный шов выполняют с присадочным материалом. Во избежание подрезания на вертикальной заготовке нужно держать конец присадочного прутка чуть выше середины сварочной ванны, в верхней половине шва.

Технология сварки вертикальных швов представлена на рис. 5. При формировании шва сверху вниз сварку ведут правым способом, а снизу вверх — левым.

Термическая обработка сварочных швов

В процессе газопламенной обработки в сварочном шве возникают напряжения и деформации, подобные тем, которые возникают при дуговой сварке. Особенно выражены эти недостатки при сварке сталей с высоким содержанием углерода, которые в процессе сварки закаливаются, в результате чего сварочный шов становится твердым и хрупким. Для устранения этих напряжений и нормализации структуры сварочного шва применяют термическук обработку, под которой понимают следующее: отжиг, нормализацию и отпуск. Кроме того, термическая обработка сварочного шва улучшает структуру его металла.

Отжиг низкоуглеродистых сталей осуществляют нагревом детали после сварки в печи при температуре 600 — 680°С, от чего сталь становится пластичной, а внутренние напряжения снижаются. Нагрев производят не менее чем 30 минут, после чего деталь должна остыть вместе с печью. Режимы отжига подбирают по справочной литературе, в зависимости от вида свариваемой стали. Для крупногабаритных деталей, которые невозможно поместить в печь, применяют местный отжиг.

Нормализацию с последующим отпуском осуществляют для сталей с повышенным содержанием углерода. При этом нагрев производят до температуры 400 — 700°С (в зависимости от вида стали), после чего деталь медленно охлаждают на спокойном воздухе. Такая термическая обработка обеспечивает сохранение мелкозернистой структуры сварочного шва, его высокую прочность и пластичность. Особенно актуален процесс нормализации при сварке сталей с высоким содержанием углерода, которые в результате газопламенной обработки закаливаются, что ведет к повышению их твердости и хрупкости.

Повышению пластичности сварного соединения способствует проковка детали. Для этого сварочный шов нагревают пламенем горелки до светло-красного цвета и в таком состоянии проковывают. В результате проковки зерна металла измельчаются, а пластичность и вязкость сварочного шва повышаются. Проковку прекращают при остывании металла до темно-красного цвета. После проковки деталь подвергают нормализации.

Технология газовой сварки трубопроводов

Прокладка трубопроводов диаметром до 100 мм редко обходится без сварки. При газовой сварке трубы сваривают стыковыми соединениями с выпуклым швом. Величина выпуклости шва зависит от толщины стенки и обычно находится в пределах 1 — 3 мм. Трубы с толщиной стенок до 3 мм сваривают без скоса кромок, выдерживая стык с зазором, равным половине толщины стенки трубы. При сварке труб с более толстыми стенками кромки разделывают, выполняя скос под углом 35 — 45 Острые кромки притупляют, чтобы при сварке они не оплавлялись. При сварке труб следует следить за тем, чтобы расплавленный металл не протекал во внутреннюю полость, снижая сечение трубопровода.

Сварку трубопроводов лучше всего вести поворотным методом, выдерживая нижнее положение шва. Порядок сварки поворотных стыков показан на рис.1. Однако при монтажных работах часто это соблюсти невозможно, поэтому прибегают к потолочным и вертикальным швам.

Сварку начинают с одной из точек и выполняют четырьмя участками, разделяющими периметр трубы на четыре равные части. Сварку ведут в последовательности, показанной на рис.2.

В труднодоступных местах, где нет возможности приблизить горелку к сварочному шву, выполняют сварку с козырьком (рис.3). Для этого в трубе вырезают козырек, сваривают труднодоступные места с внутренней стороны трубы, прикладывают козырек на место и заваривают остальные швы.

Сварка поворотных стыков

Рис. 1. Сварка поворотных стыков: А — размещение прихваток (1); Б — выполнение первого слоя сварки на участках А—Б, Г—В; В — поворот стыка и сварка на участках Г — А; В—Б; Г — второй слой сварочного шва; Д — третий слой сварочного шва 

Сварка труб большого диаметра

Рис. 2. Сварка труб большого диаметра: А — до 300 мм; Б — до 600 мм; В — сварка без поворота трубы

Сварка козырьком

Рис. 3. Сварка козырьком

Технология дуговой сварки трубопроводов

Технология сварки трубопроводов

Сварка трубопроводов имеет свои особенности, так как эти конструктивные элементы чаще всего работают под давлением, что накладывает отпечаток на условия качества сварочных работ. Трубы под сварку выбирают по внутренним диаметрам. В одну группу входят трубы, имеющие расхождение по внутреннему диаметру до 1%, но не более 2 мм. Концы труб под сварку разделывают и обрабатывают (обрезают, снимают фаски) механическим способом (резцом, фрезой или абразивным кругом). Трубы из низколегированных и низкоуглеродистых сталей могут быть обработаны газовой или воздушно-дуговой резкой с последующей зачисткой кромок режущим или абразивным инструментом до удаления следов термической резки.

При прокладке магистральных трубопроводов сортировку труб по диаметрам и толщине стенок производят обычно централизованно в заготовительных цехах, трубосварочных механизированных базах (размещенных по трассе) или прирельсовых складах. Если это по каким-либо причинам сделать невозможно, то сортировку труб производят непосредственно перед сваркой. Магистральные трубопроводы обычно сваривают в звенья. Трубы тщательно очищают от попавших внутрь загрязнений (комьев грунта, грязи, камней и т.д.), после чего концы труб подготавливают к сварке.

Торцы, скошенные кромки, а также прилегающие к ним поверхности очищают от грязи, масла и окалины. Перед сборкой необходимо проверить правильность подготовки кромок и зачистить их до металлического блеска. Подготовка под сварку предусматривает выправку деформировавшихся при перевозке концов труб, проверку формы, состояние и совпадение кромок, трубы центрируются, производится проверка правильности выставленных зазоров.

При централизованном изготовлении звеньев (секций) диаметром от 168 мм и более в механизированных мастерских применяют преимущественно автоматическую сварку поворотных стыков под слоем флюса на установках полустационарного или полевого типа. Количество труб в звене ограничивается их весом и габаритами транспортных средств, применяемых для доставки звеньев к месту укладки. Обычно сваривают в звенья 4—8 труб.

При изготовлении звеньев непосредственно на трассе в отдельных случаях применяют электроконтактную (метод оплавления кромок стыкуемых труб) и газопрессовую сварку (для трубопроводов из малоуглеродистых и низколегированных сталей), в которых по условиям эксплуатации может быть допущено утолщение стыка до 1/2 толщины стенки с внутренней стороны трубопровода. В ряде случаев для сварки поворотных и неповоротных стыков труб различных диаметров с толщиной стенок более 3 мм может применяться ручная дуговая сварка. Ручная дуговая сварка допускается только для соединения труб диаметром до 114 мм, со стенками толщиной до 5 мм, при рабочем давлении внутри трубопровода до 8 атмосфер.

При сборке стыков трубопроводов (или их секций) должно быть обеспечено правильное фиксированное взаимное расположение стыкуемых труб и деталей, а также свободный доступ к выполнению сварочных работ. Трубы больших диметров можно взаимно фиксировать при помощи стяжечных приспособлений. Трубы небольших диаметров (до 100 мм включительно) собирают с прихваткой и с полным проваром корня коренного шва. Высота прихватки определяется толщиной стенок трубы и должна быть не менее 3 мм при толщине стенки до 10 м и 5 — 8 мм при толщине стенки более 10 мм. Прихватку выполняют теми же электродами, которыми будут варить коренной шов.

К качеству прихватки предъявляются те же требования, как и к основному сварному шву. Прихватка должна быть удалена механическим способом, если при внешнем осмотре обнаружены поры и трещины. Допускается выполнять сборку труб из низкоуглеродистых и низколегированных сталей при помощи приваривания к ним технологических пластин или накладок, которые удаляют механическим способом по мере заполнения шва.

При сварке поворотных стыков ось трубы располагают горизонтально или вертикально. Если вращение стыка затруднено, то сварку выполняют в два поворота, как показано на рисунке.

Сварка стыка труб

Сварка стыка труб: А — при диаметре до 200 мм; Б — при диаметре от 200 до 500 мм; В — при диаметре более 500 мм; 1 — 6 — порядок (последовательность) положения участков слоя современных методах контроля за сварными соединениями мы расскажем в соответствующем разделе данной книги.

При сварке труб диаметром до 200 мм на стеллажах окружность стыка разделяют на две равные части. Каждый слой шва начинают с нижней части, смещаясь от нижней точки трубы на 20 — 30 мм. Конец шва следует перекрывать на 20 — 30 мм. Стыки труб диаметром от 200 до 500 мм при сварке на стеллажах разбивают на 3 — 4 участка и сваривают снизу вверх, поворачивая каждый участок, располагая его вертикально. Второй слой заваривают участками, равными половине длины окружности сначала с одной, а затем с другой стороны стыка снизу вверх. Последующие слои сваривают так же, как и второй слой, но с поворотом трубы на 180° или смещением начальной точки сварки на 50 — 60 мм от начала предыдущего слоя.

Независимо от вида сварки пооперационная проверка качества сварных работ производится при сборке, прихватке и наложении швов. 

Пропан-бутано-кислородная сварка

Пропан-бутано-кислородную сварку применяют для неответственных деталей. Давление рабочих газов при входе в горелку поддерживается в пределах: пропан-бутановой смеси 0,02 — 0,05 МПа, кислорода — 0,02 — 0,04 Мпа, при этом поддерживается соотношение рабочих газов —3,5 : 4. При этом виде сварки недопустимо применение в качестве присадочной проволоки Св-08 и Св-08А. Чаще всего используются проволоки марок Св-12ГС, Св-08Г2С, Св-08ГС, хорошо раскисляющие сварочную ванну.

Присадочную проволоку держат под углом 35 — 40° к оси шва, а пламя — под углом 45 —60°. Расстояние от ядра пламени до поверхности сварочной ванны должно поддерживаться в пределах 3 —6 мм, а до плавящегося конца присадочной проволоки — 2 — 4 мм. Основные режимы пропан-бутано-кислородной сварки приведены в таблице 1. Примерные нормы расхода материалов при пропан-бутано-кислородных смесях при сварке стыковых соединений из низкоуглеродистых сталей приведены в таблице 2.

Таблица 1. Режимы пропан-бутано-кислородной сварки

Толщина свариваемого метала, мм Величина зазора, мм Угол скоса кромок Расстояние между прихватками, мм Диаметр присадочной проволоки, мм № наконечника горелки Расход, л/ч Скорость сварки
Пропан-Сутана Кислорода
0,5-1 1-1,5 Без скоса 10-40 1-1,5 1-2 30-90 105-315 7-10
1-2 1,5-2 Тоже 20-ео 1, 5-2 2-3 60-180 210-680 5-7
2-3 2-3 Тоже 40-120 2-2, 5 3-4 120-270 420-945 4-5
3-6 3-6 60-90 60-240 2,5-4 4-5 180-540 630-1890 1, 6-4

Примечание: для сварки сталей толщиной свыше б мм пропан-бутано-кислородные смеси не применяют.

Таблица 2. Нормы расхода материалов

Толщина металла, мм Масса наплавленного металла, кг Масса присалочной проволоки, кг Нормы расхода на 1м шва
Пропанбутана, м3 Кислорода, м3
Швы стыковых соединений без скоса кра чок
1 0,028 0,029 0,013 0,044
1,5 0,049 0,051 0,023 0,081
2 0,07 0,074 0,034 0,119
2,5 0,084 0,088 0,044 0,148
3 0,098 0,103 0,051 0,178
Швы стыковых соединений со скосом двух кромок
3 0,133 0,14 0,063 0,22
4 0,178 0,187 0,104 0,365
5 0,224 0,235 0,139 0,49
б 0,265 0,278 0,197 0,69

Керосино-кислородная сварка

Использование жидких горючих смесей для сварочных работ весьма ограничено и применяется только при острой необходимости, когда невозможно выполнить другой вид сварки и только для неответственных конструкций. Для жидкого горючего применяют специальные бачки, в которых создают необходимое давление. Образец такого устройства представлен на рисунке. Внешне бачок напоминает паяльную лампу с манометром, но без горелки и несколько больших размеров. Давление в баке создается насосом 1 и контролируется манометром 2. Отбор горючего проводится через трубку 4 и тройник 7, снабженный запорным вентилем. Технические характеристики бачка для жидкого горючего приведены в таблице.

Сварку ведут горелками ГКР-1-67 или им подобными горелками. Мощность пламени устанавливают в зависимости от толщины свариваемых металлов, регулируя поступление горючего и кислорода. Расход жидкого горючего должен быть в пределах 180 — 200 г на 1 мм толщины свариваемого металла. Соотношение кислорода к жидкому горючему устанавливают 1,8:2 (кислород: жидкое горючее).

Выбор присадочной проволоки для этого вида сварки строго ограничен. Пользоваться марками Св-08 и Св-08А нельзя. Лучше всего подходит проволока марки Св-08ГС и Св-12ГС, в которых повышено содержание марганца и кремния. Это необходимо для компенсации этих выгоревающих элементов в процессе сварки.

Интенсивность пламени при керосино-кислородной резке ниже, чем при ацетилено-кислородной, поэтому зазор между свариваемыми деталями оставляют большим, чтобы пламя проникало на всю толщину свариваемого металла. Расстояние ядра пламени от свариваемых кромок соблюдают в пределах 3 — 4 мм, устанавливая мундштук горелки под углом 60 — 90°. Присадочную проволоку подают под углом 90° к оси мундштука. Сварку ведут как левым, так и правым методом.

Специальный бачок для жидкого горючего БГ-63
Специальный бачок для жидкого горючего БГ-63: 1 — насос; 2 — манометр; 3 — дужка; 4 — трубка отбора горючего; 5 — корпус; 6 — кольцо; 7 — тройник имеющий запорный вентиль; 8 — заглушка

Бачки для жидкого горючего

Показатель Тип бачка
ЕГ-63 БГ-68
Емкость,л 6,5 9,0
Рабочее давление, кгс/см2 до 3 до 3
Габаритные размеры, мм
   Высота
   Диаметр
440
180
440
210
Масса, кг 3,7 4

Газопламенная наплавка поверхностей

При помощи пламени газосварочной горелки выполняют наплавку поверхностей изношенных деталей, наплавку твердых сталей и т.д. Этот метод позволяет придать детали необходимый размер, восстановив ее первоначальные размеры, или придать ее наплавленной зоне определенные свойства. Производительность газопламенной наплавки небольшая, поэтому ее применяют для небольших деталей. Наплавка низкоуглеродистых сталей выполняется методом обычной сварки с применением присадочной проволоки того же состава, что и основной материал.

Наплавка твердых сплавов

Наплавку твердых сплавов получают при применении твердых сплавов типа стеллиты, сормайт и т.д., характеристики которых отражены в таблице 1.

Таблица 1. Твердые сплавы, применяемые при наплаве

Сплав Содержание легирующих добавок, %
Вольфрам Храм Марганец Никель Кобальт Жалеэо Кремний Углерод Примеси
Сталиты:
   -В2К
   -ВЗК
13-17
4-5
27-33
28-32
1.0
-
До 2
До 2
47-53
58-62
До2
До2
1-2
2,5
1,8-2,5
1-1,5
46-48
42-43
Другие сплавы:
   -Сормайт-1
   -Сормайт-2
-
-
25-31 1
3-17
1,5
1
3-5
1,3-2,2

-
-

Остальное 2,8-4,2
1,5-2,2
2,5-3,3
1,5-2
49-54
42-43

Металлокерамические сплавы (победит и др.) под воздействием газопламенной обработки перегреваются, поэтому данным методом они не наплавляются. Наплавку твердых сплавов ведут с применением флюсов, составы которых отражены в таблице 2.

Таблица 2. Флюсы, применяемые при наплаве

Вид сплава  Состав флюса, %
Бура прокаленная Борная кислота Плавиковый шпат Двууглекислая сода Углекислый натрий Кремнезем Азотнокилый натрий
ЗХ2В8, Х9С2 50 50 - - - - -
Белый чугун, чугун КУ, чугун Х3 23 - - - 27 - 50
Сормайт-1, Сормайт-2 50 - - 47 - 3 -
Стелиты: В2К, В3К (флюс №1 при наплавке углеродистых сталей) 100 - - - - - -
В2К, ВЗК (флюс № 2 при наплавке углеродистых сталей) 20 68 - 12 - - -

Наплавку выполняют как на холодную сталь, так и с предварительным подогревом до температуры 500 — 750°С. Для этого чаще всего используют нормальное пламя или небольшой избыток ацетилена. Процесс поддержания сварочной ванны приблизительно такой же, как и при сварке углеродистых сталей. Так как текучесть металла высока, то наплавку следует производить при нижнем положении шва. Для того чтобы процесс кристаллизации металла проходил нормально, не следует давать наплавленной поверхности быстро остывать. Чаще всего для медленного охлаждения деталь выдерживают в горячем песке или помещают в горячую печь, охлаждая их вместе. Толщина наплавляемого слоя зависит от требуемых свойств наплавленной поверхности и твердосплавного слоя. Рекомендуемые толщины наплавленного слоя при наплавке сормайтом приведены в таблице 3.

Таблица 3. Рекомендуемые толщины наплавляемых слоев

Вид изделия Толщина наплавляемого слоя, мм
Сормайт-1 Сормайт-2
Режущие части обрезных матриц, ножей, пpecc-ножниц т.д. 1,5-2,5 До 5,0
Детали, работающие на истирание со значительной нагрузкой 2,5-3,5 До 7,0
Детали, работающие на истирание с не значительней нагрузкой 3-4,5 -
Детали, работающие с минимальной нагрузкой До 6,0 -

Наплавка цветных металлов и сплавов

Цветные металлы и их сплавы обычно наплавляют дуговой сваркой, что производительнее и эффективнее. Однако латунь наплавлять дуговым способом не рекомендуют, ввиду интенсивного испарения цинка при температурах, достигающих 900°С. Водород, поглощаемый жидким металлом из сварочного пламени, не успевает выделиться, так как латунь быстро остывает. Поэтому в охлажденном металле остаются пузырьки.

Пары цинка попадают в пузырьки водорода и там кристаллизуются, в результате чего наплавленная поверхность получается пористой, поэтому для латуни применяют газопламенную наплавку.

При наплавке латуни в качестве флюса используют буру, которую разводят в виде пасты и кистью наносят на наплавляемую поверхность, которую перед наплавкой тщательно зачищают до металлического блеска. Для наплавки можно использовать все виды горючих газов (ацетилен, пропан-бутан, керосин и т.д.). Мощность сварочного пламени должна быть такой же, как при сварке сталей, а конец ядра должен находиться от поверхности на расстоянии в 2 — 3 раза большем, чем при сварке. Наплавку ведут по возможности быстро. В данной области используются установки проволочного и порошкового типов. Одна из них — установка УГПЛ показана на рис. 1.

Она предназначена для ручного напыления термопластовых, цинковых и других материалов с температурой плавления 800°С. Используют в качестве напыляемого материала порошок. При работе используют ацетилен и воздух.

Установка УГПЛ Газофлюсная наплавка
Рис. 1. Установка УГПЛ: 1 — щит управления; 2 — газопламенный напылитель; 3 — порошковый питатель; 4 — редукторы 

Рис. 2. Газофлюсная наплавка: 1 — наплавляемая деталь; 2 — полуда; 3 — сварочная ванна; 4 — слой наплавленного металла.  

Применение порошкообразных флюсов

Флюсами в виде порошков обрабатывают наплавляемую поверхность, что создает предпосылку для защиты сварочной ванны. При использовании порошкообразных флюсов не следует применять латунь с содержанием кремния более 0,3%, так как могут образоваться хрупкие прослойки, снижающие прочность сцепления. Поэтому для наплавки чаще всего используют низкокремнистые латуни (ЛК-62-02 и др.). Перед наплавкой поверхность готовят, зачищают до металлического блеска, выполняют предварительный подогрев и после этого покрывают порошком флюса и приступают к наплавке. Сварочное пламя используют с небольшим избытком кислорода. Основные режимы, используемые при наплавке латуни, приведены в таблице 4.

Таблица 4. Режимы, используемые при наплавке латуни

Толщина наплавляемого слоя, мм Диаметр присадочного прудка, мм. Номер сменного наконечника
3-4 4-6 4
5-6 8-10 5
6-7 10-12 6

Газо-флюсовая наплавка выполняется с применением газообразного флюса, например БМ-1, который вводят в пламя горелки при помощи специальных установок. При наплавке используют нормальное пламя, применяя в качестве присадочного материала кремнистую латунь. Схема процесса газо-флюсовой наплавки приведена на рис. 2. Процесс газо-флюсовой наплавки легче поддается механизации. Поэтому его выполняют на специальном оборудовании.

Газовая сварка стали и чугуна

Газовая сварка чугуна

Газовую сварку чугунных изделий применяют редко и в основном ограничиваются ремонтными работами (наплавка изношенных поверхностей, заварка литейных раковин, устранение внешних дефектов и т.д.). Лучший эффект дает сварка ацетилено-кислородной смесью, поэтому остальные горючие смеси для сварки чугунных изделий практически не применяют. Сварку ведут с предварительным подогревом, который может быть общим и местным.

Для общего нагрева применяют муфельные печи индукционные нагреватели, горны и т.д., способные выполнить нагрев до 300 — 400°С для небольших деталей и 600 — 700°С для крупных. Для местного подогрева используют газовые горелки, паяльные лампы и т.д. В связи с большой текучестью чугуна сварку выполняют только для нижних положений шва. Сварочную ванну защищают флюсами, которые подают вручную. Примерный состав флюсов, используемых при сварке чугуна, приведен в таблице.

Таблица 1. Флюсы, используемые при сварке чугуна

Номер флюса Составные части флюса (в % по массе)
Бура плавленная Натрий углекислый Азотнокислый натрий Углекислый калий Двууглекислый натрий Окись кремния
1 100 - - - - -
2 50 - - - 47 3
3 56 22 - 22 - -
4 23 27 50 - - -

Примечание: возможно использование барометиловых флюсов, представляющих собой летучие жидкости, которые подают в зону сварки при помощи специальных установок.

Газовая сварка углеродистых сталей

Сварка низкоуглеродистых сталей обычно затруднений не вызывает. Чаще всего для этого применяют ацетиленовое пламя, имеющее достаточно высокую температуру. Сварку ведут нормальным пламенем с расходом ацетилена при левой сварке Va =(100- 130)S, при правой сварке Va =(120 - 150)S. В качестве присадочного материала применяют проволоку Св-08, Св-08А или Св-08АА. Низкоуглеродистые стали иногда сваривают и другими горючими смесями (пропан-бутан, природный газ и др.).

На особенностях такой сварки мы остановимся ниже. Флюсы при сварке низкоуглеродистых сталей применяют редко. Сварку ведут так, чтобы свариваемые кромки плавились одновременно, а капли расплавленного присадочного металла не попадали на недостаточно про-гретую кромку. Ответственные швы проковывают и подвергают термообработке.

На качество сварки сталей оказывает большое влияние чистота поверхности кромок, так как любые посторонние частицы на свариваемых кромках способствуют появлению непровара, пор, шлаковых включений и т.д.

Прихватку деталей под газовую сварку необходимо выполнять той же присадочной проволокой и тем же наконечником горелки, какими будет выполняться основная сварка. Прихватку выполняют в местах наименьшей концентрации напряжений.

Сварка сталей с повышенным содержанием углерода имеет свои особенности. Кислород, подаваемый в зону горения сварочного пламени, вступает в реакцию с углеродом, содержащимся в металле, способствуя его выгоранию. Выгорание углерода меняет структуру металла в районе сварочного шва, что сказывается на качестве сварного соединения.

Среднеуглеродистые стали сваривают, уменьшая мощность пламени до Va = (75 - 90) S. Для этого подачу кислорода снижают, применяя так называемое ацетиленовое пламя. Сварку тонких металлов (до 3 мм) ведут без предварительного подогрева.

Сварку среднеуглеродистых сталей толщиной более 3 мм ведут после общего предварительного подогрева до температуры 250 - 350°С или местного нагрева околошовной зоны до температуры 650 -700°С.

Высокоуглеродистую сталь газовой сваркой варят только при толщине не более 5-6 мм. При необходимости сварки более толстых сталей нужно выполнять одновременную сварку двумя сварщиками с двух сторон. Сварку ведут с обязательным предварительным подогревом с последующей термической обработкой и проковкой.

Газовая сварка легированной стали

Легированные стали газовой сваркой варят редко, так как создать качественную защиту сварочной ванны при газопламенной обработке чрезвычайно трудно. При необходимости газовую сварку легированных сталей выполняют только ацетиленовым строго нормальным пламенем. Большинство легированных сталей перед сваркой подвергают предварительному нагреву, а после сварки - проковке с термообработкой. Сварку многих видов легированных сталей ведут с обязательным применением защитного флюса. Низколегированные стали 10ХСНД, 15ХСНД и некоторые другие хорошо свариваются и без флюса. Присадочный материал подбирают в зависимости от вида стали. Способы сварки некоторых видов легированных сталей отражены в таблице 2.

Таблица 2. Способы сварки легированных сталей

Вид стали Присадочный материал и флюсы В Режим сварки Вид термообработки
Низколегированные, хромоникелевые стали 10ХСНД, 115ХСНД Св-08, Св-08А, Св-08AA, Св10Г2 флюсы не применяют Мощность (пламени Va- (75 -130)s После сварки желательна проковка шва - при светло- (красном калении с последующей нормализацией
Теплоустойчивые молибденовые и хромолибденовые стали 15М, (20М, 12ХМ, 15ХМ, 12Х1МФ Св-08XHM, Св-18ХМА, Св- 08 ХМ, Св08МХ флюсы не применяют Мощность пламени Va=100s
Пламя строго нормальное
При сварке необходим пред варительный подогрев до 250-350ºC. После сварки (требуется нормализация)
Хромомарганцевые 20ХГС, К5ХГС, ЗОХГС, 135ХГС Св-18 ХГС, Св-18ХМА, Флюсы не применяют Мощность пламени Va= (75-100) 3 После сварки провод закалку с отпуском
Хромоникелевые,аустенитные Х18Н9Т и др . СВ-01Х19Н9, Св-04Х19Н9, Св-07-Х19 Состав флюса - 5 плавиковый шпат 80, двуокись кремния - 20 или 1 5ура - 50 и борная кислота 50 Мощность пламени Va=75S
Пламя строго нормальное
Сварка без подогрева. После сварки быстрое охлаждение сжатым воздухом или водой
Хромистые 1X13, 2Х113 Х14, Х17 Г Св-01Х19Н9, Св- 06X19H9Т Состав флюса, $ - борная кислота - 55, окись кремния- 10, феромарганец — 10, ферохром-10, титановая руда - 5 плавиковый таг - 5 Мощность пламени Va=70s
Пламя строго нормальное
При сварке еобходим редварительый подогрев до 200-250ºС с последующей термообработкой

Флюсы для газопламенной сварки сталей применяют по номерам. Наиболее часто применяющиеся при сварке сталей флюсы, приведены в таблице 3.

Таблица 3. Флюсы для сварки сталей

Наименование компонента Номер флюса и % содержания компонента
1 2 3 4 5
Бура 100        
Кислота борная     70 55  
Натрий углекислый     30    
Калий углекислый   50      
Натрий двууглекислый   50      
двуокись кремния       10  
Ферромарганец       10 10
Шпат плавиковый       5  
Концентрат рутиловый       5  
Мрамор         28
Двуокись титана         20
Феррохром       10  
Ферротитан       5 10
Фосфор красный         6
Ферросицилий         6

При газовой сварке легированных сталей появляется опасность выгорания легирующих элементов под действием высоких температур. Это влечет за собой появление в массиве шва посторонних включений в виде шлаков и окислов. Поэтому сварку следует вести нормальным пламенем и только в один слой.

При сварке следует следить за тем, чтобы шов охлаждался медленно, так как при резком охлаждении увеличивается вероятность появления трещин. На качество сварного соединения большое влияние оказывает очистка и подгонка кромок. При подготовке деталей к сварке нужно следить затем, чтобы зазор между свариваемыми кромками был одинаковый. 

Газопламенная пайка металлов

Газопламенная пайка металлов отличается от сварки тем, что в качестве присадочного материала (припоя) берут материал, имеющий температуру плавления меньшую, чем у основного металла. Припой может быть мягким и твердым.

Мягким припоем называют сплавы, температура которых ниже 450°С. Прочность соединений, получаемая мягкими припоями низкая и в зависимости от материала, выбранного в качестве припоя, находится в пределах 2—20 кг/мм2. Чаще всего в качестве мягкого припоя используют оловянно-свинцовые сплавы, химический состав и область применения которых представлены в таблице 1.

Таблица 1. Характеристики оловянно-свинцовых сплавов

Марка припоя Химический состав (по массе), % Область применения
Олово Сурьма Свинец Примеси (не более)
ПОС-90 ВО-90 До 0,15 Остальное 0, 294 Пайка деталей и узлов, подвергающихся в дальнейшем гальванич ее к мм. покрытия к
ПОС-61 59-61 До 0,8 Остальное 0, 314 Пайка и горячее лужение меди я ее сплавов, стали и других соединений допускающих нагрев до 175 °С
ПОС-50 49-50 До 0,8 Остальное 0,314 Пайка меди, латуни, бронзы, стали
ПОС-40 39-40 1,5-2,0 Остальное 0, 314 Пайка и горячее лужение меди и ее сплавов, стали (в том числе и оцинковамной) к других соединений допускающих нагрев до 2 00 ºС
ПОС-30 29-30 1,5-2,0 Остальное 0,424 Пайка меди я её сплавов, оцинкованного и луженного железа
ПОС-18 17-18 2,0-2,5 Остальное 0,424 Пайка соединений меди я ее сплавов, а также стальных неответственных деталей, лужение
ПОС-4-6 3-4 5-6 Остальное 0,424 Лужение меди ее сплавов, стальных деталей

При пайке мягкими припоями медных деталей используют канифоль или хлористый цинк, пайку стальных деталей выполняют только хлористым цинком или раствором соляной кислоты. Источником тепла при такой пайке могут служить паяльные лампы и все виды газовых горелок. Мелкие детали паяют паяльником.

Твердыми припоями называют сплавы на основе меди, алюминия, никеля и др., создающие соединение с пределом прочности свыше 30 кгс/мм2. Соединение, полученное с помощью твердых припоев, по своим физико-механическим свойствам мало отличается от сварочных. Выбор вида припоя зависит от прочности, которую необходимо создать неразъемному соединению, и вида материалов, из которых состоят детали, подвергающиеся пайке. Этот вид пайки ведут газопламенными горелками, создавая температуру, необходимую для плавления припоя, то есть мощностью пламени немного ниже мощности, используемой при газопламенной сварке. Для пайки меди и ее сплавов и стальных деталей преимущественно пользуются медно-цинковыми припоями, состав которых приведен в таблице 2.

Таблица 2. Медно-цинковые припои

Марка припоя Химический состав (по массе), %
Медь Цинк Олово
ПМЦ-36 36 Остальное -
ПЩ-48 48 Остальное -
Л-62 62 Остальное -
ЖЖ-62-06-04 62 Остальное 0,6

Медно-цинковые припои лучше греть слегка окислительным пламенем. Образовавшиеся в этом случае тугоплавкие оксиды меди покрывают жидкий припой и защищают цинк от испарения.

Жаропрочные и нержавеющие стали паяют нейтральным пламенем, это избавит их от образования карбидов хрома, которые вызывают межкристаллитную коррозию. В случаях пайки медных или стальных деталей с повышенными требованиями к электропроводности соединения пользуются серебряно-медно-цинковыми припоями, в которых вместо олова содержится серебро. Пайку можно выполнять обычными горелками, но лучших результатов можно добиться, используя специальный сетчатый мундштук. Алюминий паяют алюминиевыми припоями, состав которых приведен в таблице 3.

Таблица 3. Алюминиевые припои

Марка припоя Химический состав (по массе), % Область применения
Алюминий Медь Кремний Цинк Марганец
П 590А 89 10 1 - - Пайка различных соединений из алюминия и его сплавов
Силумин 87,2 До 0,8 11,7 До 0,3 - Пайка алюминия и его сплавов АМц, АВ
П750А 80 - - 20 - Пайка алюминия и его сплавов АМц
П 550А 65,5 27 6 - 1,5 Пайка алюминия и его сплавов АМц, АМг, АВ
34А 66 28 6 - - Тоже
П 480А 20 15 - 64,4 0,6 Пайка алюминия и его сплавов АМц, АМг,Д16, Д20, АЛ2, АП9, АЛ11 и др.
П 425А 20 15 - 65 - То же

Кромки деталей, предназначенных для пайки, готовят так же, как и для сварки. Техника пайки напоминает газовую сварку (рис.1 и 2). Кромки деталей разогревают до температуры, при которой плавится флюс. После покрытия кромок флюсом продолжают нагрев до температуры плавления припоя. Горелку держат так, чтобы плавился припой, а пламя не попадало на металл, так как это может повлечь за собой его расплавление. Когда припой расплавится, его выравнивают колебательными движениями горелки, после чего прекращают газопламенную обработку соединения. Остывая, припой кристаллизуется, образуя прочное соединение. Швы большой протяженности паяют участками.

Пайка изделий из труб Пайка цилиндрических изделий
Рис.1. Пайка изделий из труб: 1 — горелка; 2 — припой; 3 — изделие.  Рис. 2. Пайка цилиндрических изделий: 1 — горелка; 2 — припой; 3 — изделие.

Если спаивают детали одинаковой толщины, нагрев кромок должен быть одновременным. При разных толщинах кромки нагревают вначале более толстую, а затем ту, которая тоньше. Но в любом случае температура кромок должна быть одинаковой. Соединения пайкой могут быть внахлестку, встык или в «ус». Наиболее прочное соединение получается при пайке внахлестку, поэтому применяется оно чаще всего. Сборка деталей перед пайкой играет очень большую роль. Чем меньше зазор между спаиваемыми деталями, тем выше будет качество пайки.

Газовая резка металлов

Под газопламенной резкой (чаще ее называют кислородной) понимают способ разделения металла по прямому или криволинейному контуру. Метод основан на использовании для нагрева смесь горючих газов с кислородом и экзотермической (с выделением тепла) реакции окисления металла. Суть кислородной резки заключается в сгорании железа в струе чистого кислорода, нагретом до температуры, близкой к плавлению. Для удаления оксидов железа из зоны реза используется кинетическая энергия режущего кислорода. Сам процесс резки включает в себя стадию подогрева металла ацетиленовым (или другим заменителем) пламенем и непосредственную резку струей режущего кислорода.

По характеру и направленности кислородной струи различают три основных вида резки: разделительная, при которой образуются сквозные резы, поверхностная, при которой снимают поверхностный слой металла, кислородное копье, заключающееся в прожигании в металле глубоких отверстий. Процесс кислородной резки представлен на рис.1. Металл 3 нагревается в начальной точке реза до температуры воспламенения (в кислороде для стали до 1000 - 1200°С) подогревающим ацетилено-кислородным пламенем 2, после «его направляется струя режущего кислорода 1 и металл начинает гореть с выделением значительного количества тепла.

Выделяемое тепло Q вместе с пламенем резака разогревают нижние слои металла на всю его толщину. Роль подогревающего пламени в процессе резки меняется в зависимости от толщины разрезаемого металла. Так, при толщине металла до 5 мм подогревающее пламя занимает до 80% в общем количестве тепла, участвующего в процессе резки.

С увеличением толщины металла роль подогревающего пламени в балансе температур падает, и при толщине 50 мм и более доля подогревающего пламени падает до 10%. В результате взаимодействия расплавленного металла с кислородом образуются оксиды железа 5, которые вместе с расплавленным металлом удаляются из зоны реза кинетической энергией струи кислорода 1.

Для обеспечения стабильности процесса и нормальной резки металла необходимо, чтобы в зоне реза выполнялись следующие условия:

  • мощность источника тепла должна быть достаточной для нагрева металла до температуры, при которой происходит реакция сгорания металла;
  • количество тепла, выделяемое при сгорании металла в струе кислорода, должно обеспечивать непрерывность процесса;
  • реакция окисления металла должна происходить при температуре меньшей, чем требуется для плавления;
  • температура плавления металла должна быть выше температуры образовавшихся оксидов. В противном случае пленка тугоплавких оксидов изолирует металл от кислорода;
  • текучесть образовавшихся оксидов должна быть такой, чтобы они легко выдувались струей режущего кислорода;
  • теплопроводность металла не должна быть высокой, иначе процесс резки может прерваться из-за интенсивного теплообмена.

Далеко не все металлы обладают свойствами, удовлетворяющими все эти условия, поэтому кислородная резка для некоторых из них становится невозможной. К примеру, большая теплопроводность меди не обеспечивает условий для нагрева до температуры реакции сгорания металла, что затрудняет начальный этап резки. Поэтому мощности газовых резаков недостаточно для разрезания меди, которую режут дуговой сваркой. Стали с большим содержанием хрома, магния и никеля, а также алюминий образуют тугоплавкую пленку оксидов, которая препятствует контакту металла с кислородом, что затрудняет кислородную резку.

Чугун, содержащий более 1,7% углерода, кислородной резкой не обрабатывается. Это. объясняется тем, что температура плавления чугуна ниже температуры плавления образующихся оксидов, поэтому металл удаляется из зоны реза без характерного окисления. Кроме того, образующиеся при нагреве оксиды имеют низкую текучесть и с трудом удаляются струей кислорода.

Лучше всего подходит для кислородной резки углеродистая сталь, которая удовлетворяет всем условиям, необходимым для поддержания непрерывности процесса. Влияние примесей в стали на процесс кислородной резки отражено таблице.

Влияние примесей стали на процесс кислородной резки

Элемент Влияние на процесс резки
Углерод При содержании до 0, 4% процесс резки не гсудаается, при более высоком содержании ухудшается, а при содержании 1-1,25%- становится невозможным
Марганец Содержание до 0,4% на процесс резки заметно не ыгаяет. При более высоком содержании процесс резки затрудняется, а при 14% становится
Кремний Содержание в количестве, обычном для сталей отрицательного влияния на процесс резки не оказывает. При повышенном содержании процесс усложняется, а при содержании более 4% -становиться невозможным
Фосфор и сера В обычных количествах отрицательного влияния не оказывает
Хром Содержание до 4-5% отрицательного влияния на процесс резки не оказывает. При большем Содержании процесс резки становится невозможным и требует применения флюса.
Никель Содержание до 7-8% отрицательного влияния на процесс резки не оказывает. С увеличением содержания процесс резки услажняется.
Молибден Содержание до 0,25% отрицательного влияния на процесс резки не оказьвает.
Вольфрам Содержание до 10% отрицательного влияния на Процесс резки не оказывает. При более вьсоком содержании процесс резки затрудняется, а при 20%
Ванадий В обычных количествах отрицательного влияния не оказывает
Медь Содержание до 0,7% влияния на процесс резки не оказывает
Алюминий Содержание до 0,5 % влияния на процесс резки не оказавает
Кислородная резка Резка по прямой линии
Рис. 1. Кислородная резка: 1 — струя кислорода; 2 — подогревающее пламя; 3 — металл; 4 — зона реза; 5 — оксиды железа  Рис. 2. Резка по прямой линии

Технология газокислородной резки

Технологию газокислородной резки рассмотрим на примере использования вставного резака. Установку для газокислородной резки готовят так же, как и для газовой сварки. Вставной резак присоединяют к стволам горелки и устанавливают рабочее давление кислорода и ацетилена, равное значениям, рекомендуемым для данного размера мундштука. Для зажигания факела полностью открывают вентили подачи кислорода и примерно наполовину — вентиль подачи ацетилена. Пламя устанавливают, вращая вентиль подачи кислорода на вставном резаке. Пламя проверяют, нажимая на секунду рычаг подачи кислорода, и при необходимости выполняют регулировку.

На разрезаемой детали мелом наносят линию реза и устанавливают ее на верстак, закрепив при необходимости струбцинами или другим доступным способом. Для удобства можно укрепить вдоль линии реза (на расстоянии примерно 6 мм) направляющий уголок (рис. 2). Прижав боковую сторону горелки к направляющему уголку, делают два — три медленных прохода вдоль линии реза. Для обеспечения устойчивости можно опереться предплечьем рабочий верстак. Металл в начале реза разогрева до ярко-красного цвета, затем, полностью открыв рычагом (или вентилем в другой конструкции) подачу кислорода и начинают медленно перемещать пламя резака вдоль нанесенной линии.

Криволинейные контуры или отверстия режут методике, показанной на рис. 3. Для удобства перемещения резака его устанавливают на лев руку. Для резки отверстий сначала намечают её контуры, а затем прожигают внутри отверстие, из которого проводят рез до контуров, обведенных линией. После этого продолжают резку окружности.

Резка криволинейного контура УГПР — Установка кислородно-флюсовой резки
Рис. 3. Резка криволинейного контура  Рис. 4. УГПР — Установка кислородно-флюсовой резки. 1 — тележка; 2 — циклон; 3 — флюсопитатель; 4 — редуктор кислорода; 5 — резак; 6 — шланги

Высококачественная скоростная резка достигается наклоном резака под острым углом и применением специальных мундштуков, у которых имеется три отверстия для режущего кислорода. Центры этих отверстий образуют равнобедренный треугольник, вершиной которого служит отверстие, предназначенное для основной режущей струи. Режущая струя осуществляет резку и проходит первой. Две вторые струи, перемещаясь вслед за основной, осуществляют зачистку образовавшихся кромок. К недостаткам этого вида резки относят большую ширину реза и невозможность прохода по криволинейным контурам.

Кислородно-флюсовую резку выполняют при резке легированных сталей. Для этого вместе с кислородом вводят порошкообразный флюс, при сгорании которого выделяется дополнительное тепло, что увеличивает температуру в зоне резки. В качестве флюса чаще всего используют железный порошок, которым заполняют специальный флюсопитатель, обеспечивающий подачу и регулировку расхода. Продукты сгорания флюса взаимодействуют с оксидами, образуя жидкотекучие шлаки, которые легко удаляются из зоны реза. Лучше всего подаются кислородно-флюсовой резке хромистые и хромоникелевые стали. Этим же методом можно резать и чугун. Резка сплавов на медной и алюминиевой основе затруднительна и требует последующей механической обработки. Для механизации работ по кислородно-флюсовой резке существует установка УГПР (рис. 4). Сама установка состоит из бачка флюсопитателя с редуктором ДКС-66, смонтированных на тележке, универсального резака Р2А-01 в блоке с узлом подачи флюса. Флюс подается кислородом. Применяемая марка флюса - ПЖ (железный порошок). При резке подобных сплавов выделяется большое количество вредных паров и газов, что может оказать отрицательное влияние на здоровье резчика. Поэтому рабочее место должно хорошо вентилироваться, а при больших объемах работ может применяться дополнительная защита органов дыхания респиратором. Поверхностная резка (рис. 5) позволяет снять с основного металла слой нужной толщины.

Поверхностная резка Прожигание бетона кислородным копьем
Рис. 5.  Поверхностная резка: 1 — мундштук; 2 — шлак; 3 — канавка  Рис. 6.  Прожигание бетона кислородным копьем: 1 — бетон; 2 — копье; 3 — защитный экран; 4 — ручка подачи и вращения копья; 5 — подача кислорода; 6 — подача воздуха с флюсом.

Для этого мундштук резака направляют к поверхности под углом 15 — 40°. Металл, расположенный вперед кислородной струи, нагревается перемещающимся нагретым шлаком и выдувается из зоны реза. Струю режущего кислорода подают с меньшей скорость чем при разделительной резке, что обеспечивает сгорание лишь поверхностных слоев металл Подобной резкой можно снимать полностью слой ил вырезать канавки, нужные для технологических целей.

Резку кислородным копьем (рис.6) можно выполнять по металлу, бетону или железобетон. Для этого к рукоятке с вентилем для кислород подсоединяют тонкостенную стальную трубку наружным диаметром 20 — 35 мм и подают к месту реза. До начала реза трубку нагревают газовой горелкой или электрической дугой до температуры, при которой происходит воспламенение кислорода.

Затем по трубке к месту реза направляют кислород, который, воспламеняясь, образует копье. Кислородное копье с большим усилием прижимают к нужному месту, прожигая отверстие. В процессе прожигания копью придают возвратно-поступательное и вращательное движение. Образовавшиеся при этом шлаки выдуваются через зазоры, образованные между стенками отверстия и копьем. 

Газовая сварка цветных металлов

 

Газовая сварка меди и ее сплавов

Медь и ее сплавы обладают большой теплопроводностью, что создает дополнительные трудности при их газопламенной обработке. Для преодоления теплопроводности меди требуется концентрация большего количества тепла, что влечет за собой перегрев металла и укрупнение его структуры. Кроме того, медь обладает низкой стойкостью к образованию трещин в массиве сварочного шва и склонностью к образованию газовых включений. Свариваемость меди во многом зависит от наличия примесей и, в первую очередь, оксидов. Чем меньше в меди содержится оксидов, тем выше ее свариваемость. Кроме того, образовавшийся при повышенных температурах оксид меди размещается по границам кристаллической решетки, что приводит к повышению хрупкости сварочного шва.

Подготовка к сварке медных деталей заключается в тщательной зачистке до металлического блеска кромок и протравке их в азотной кислоте. Детали плотно сжимают между собой без скоса кромок. Медь варят нормальным пламенем с применением  защитных флюсов, что препятствует образованию оксидов меди. Сварку ведут быстро, без перерывов в работе. В качестве присадочного материала можно использовать обычную медную проволоку, диаметр которой зависит от толщины свариваемого металла. Кроме того, для сварки меди часто используют специальную проволоку марки МСр-1. Зависимость толщины присадочной поволоки от толщины свариваемых деталей отражена в таблице 1.

Таблица 1. Соотношение толщин присадочной проволоки и свариваемой детали

Толщина меда, мм До 1,5 1,5-2,5 2,5-4 4-8 8-15 Более 15
Диаметр присадочной проволоки, мм 1,5 2 3 4-5 6 8

Сварку медных деталей ведут в один слой, а при необходимости сварки листов толщиной более 10 мм работают одновременно двумя горелками с двух сторон. Для защиты сварочной ванны используют флюсы, примерный состав которых приведен в таблице 2.

Таблица 2. Состав флюсов для защиты сварочной ванны

Компонент Состав флюса (помасое), %
№1 №2 №3 №4 №5 №6 №7 №8
Бура прокаленная 100 - 50 75 50 50 70 56
Борная кислота - 100 50 25 35 - 10  
Поваренная соль - -   - -   20 22
Фосфорнокислый натрий - - - - 15 15 - -
Кварцевый песок - - - - - - -  
Древесный уголь - - - - - - -  
Углекислый калий (поташ) - - - - - - - 22

Флюсы вводят в виде порошков, пасты или подают зону сварочной ванны в парообразном состоянии.

Для придания сварочному шву необходимых механических свойств после сварки осуществляют проковку, которую для листов толщиной до 4 мм выполняют в холодном состоянии. Листы толщиной более 4 мм перед проковкой подогревают до температуры 500 — 600°С. Необходимую вязкость сварочных швов получают при термической обработке. Для этого деталь нагревают до температуры 550 — 600°С и быстро охлаждают в воде.

Латунь представляет собой сплав меди с цинком. В специальную латунь могут вводить дополнительные добавки алюминия, свинца, никеля, кремния и других легирующих элементов. Сварочная ванна, получающаяся при газопламенной обработке, активно впитывает в себя газы, что способствует образованию пор и трещин. Кроме того, цинк, имеющийся в составе латуни, под действием высоких температур кипит и испаряется, что сказывается на свойствах сварочного шва. Зависимость температуры кипения цинка от состава латуни отражена на рис.1.

Зависимость температуры кипения цинка от состава латуни

Рис.1. Зависимость температуры кипения цинка от состава латуни: 1 — температура кипения цинка; 2 — температура сварки; 3 — температура полного расплавления

Для того чтобы уменьшить это отрицательное явление, при сварке создают избыток кислорода, который способствует созданию окислов. Оксиды покрывают сварочную ванну пленкой, которая снижает испарения цинка. С этой же целью вводят в виде присадки кремний, который активно окисляется под действием кислорода, создавая над сварочной ванной тугоплавкую пленку. Диаметр присадочного материала подбирают в зависимости от толщины свариваемой латуни по таблице 3.

Таблица 3. Соотношение толщины латуни и диаметра присадочного материала

Толщина свариваемой латуни 1-2 2-3 4-5 6-7 8-10
Диаметр присадочной проволоки, мм 2 3 5 7 9

Марку присадочного материала подбирают, исходя из марки свариваемой латуни. Ацетилено-кислородную сварку ведут окислительным пламенем с применением флюсов, состав которых приведен в таблице 4.

Таблица 4. Флюсы для ацетилено-кислородной сварки

Компонент Состав флюса (по массе), %
№1 №2 №3 Марки БМ-1
Бура прокаленная 100 50 20 -
Борная кислота - 35 80 -
Фтористый натрий - 15 - -
Метилборат - - - 75
Метиловый сирт - - - 25

При толщине свариваемой латуни более 6 мм используют многослойную сварку, накладывая каждый последующий шов после тщательной зачистки предыдущего. Сварку латуни можно выполнять пропан-бутановыми  смесями  и  керосино-кислородным пламенем.

Кромки металла перед сваркой зачищают до металлического блеска и протравливают 10%-ным раствором азотной кислоты с последующей промывкой и просушкой. Швы после сварки проковывают или проколачивают, придавая им нужные механические свойства.

Бронза представляет собой сплав меди с любым металлом кроме цинка, поэтому при ее сварке нет необходимости выполнять защиту кремнием. В зависимости от состава бронза может быть оловянистой (когда в сплаве присутствует олово) и безоловянистой, содержащей в составе алюминий, кремний, никель, хром и другие металлы, кроме олова.

Олово является легкоплавким металлом, поэтому во избежание его выгорания не допускается избыток в пламени кислорода. Избыток в пламени ацетилена может привести к пористости шва, поэтому оловянистые бронзы варят строго нормальным пламенем. Жидкотекучесть оловянистой бронзы не позволяет выполнять сварку в других положениях шва, кроме нижнего. Присадочный материал следует подбирать того же состава, что и основной. Допускается применение в качестве присадочного материала фосфористой бронзы, потому что фосфор является хорошим раскислителем. Сварочный шов после сварки подвергают отжигу при температуре 750°С и закалке при температуре 600 — 650°С. Это позволит придать шву необходимые физико-механические свойства, что особенно важно в ответственных конструкциях.

Бронза, имеющая в своем составе алюминий, требует нормального пламени, так как тугоплавкие окислы алюминия А120„ получающиеся при избытке кислорода, оседают на дно сварочной ванны. Флюсы используют те же, что и при сварке меди, а присадочный материал лучше использовать того же состава, что и свариваемая бронза. При наличии в бронзе кремния ответственные детали перед сваркой подвергают предварительному нагреву до температуры 300 — 350°С.

Газовая сварка алюминия и его сплавов

Алюминий плавится при относительно низких температурах (660°С), а его оксиды являются тугоплавкими, поэтому сварка алюминия и его сплавов при помощи газопламенной обработки требует высокой квалификации сварщика. В противном случае швы получаются с микротрещинами и с повышенной пористостью. Основной причиной образования пор является водород, который при кристаллизации алюминия остается в массиве шва. С трещинами, причиной которых является кремний, борются добавлением в алюминий железа. Для снижения вероятности образования оксидов сварку следует выполнять нормальным или слегка науглераживающим пламенем с пониженным содержанием кислорода. Не допускается применение окислительного пламени.

Трудности, связанные со сваркой алюминия и его сплавов, требуют тщательной предсварочной подготовки свариваемых кромок, которые зачищают от окисных пленок и загрязнений. Для этого пользуются напильниками, шаберами металлическими щетками и абразивными кругами. В ответственных деталях свариваемые кромки дополнительно обезжиривают ацетоновой смывкой, бензином, дихлорэтаном или подвергают травлению 10%-ным раствором едкого натра. После обезжиривания или травления кромки промывают горячей водой и высушивают при температуре 100 — 120°С. После травления кромки подвергают дополнительной нейтрализации 10%-ным раствором азотной кислоты. Подготовку кромок для сварки выполняют не позже, чем за 3 — 6 часов до сварки. Если за это время сварку не производили, то кромки готовят вторично, так как на поверхности успевают образоваться новые окислы.

Сборку деталей перед сваркой выполняют, исходя из толщины свариваемых деталей. При необходимости перед сваркой накладывают прихваточные швы, расстояние между которыми устанавливают по таблице 5.

Таблица 5. Интервалы между прихваточными швами

Толщина свариваемого металла, мм Растояние между прихватками, мм Размеры прихваток, мм
Высота Длинна
До 1,5 20-30 1-1,5 2-4
1, 5-3 30-50 1,5-2,5 4-6
3-5 50-80 2,5-4 6-8
5-10 80-120 4-6 8-12
10-25 120-200 6-12 12-26
25-50 200-360 12-20 26-60

Присадочную проволоку выбирают того же состава, что и основной металл. Термически упрочняемые сплавы «АМц» варят проволокой Св АК5, содержащей кремний, который повышает жидкотекучесть сварочной ванны и снижает величину усадки шва. Сплавы типа «АМг» варят присадочным материалом с несколько большим содержанием магния, чем в основном металле. После сварки шов проковывают в холодном состоянии. Составы флюсов, применяемых при газопламенной обработке алюминия и его сплавов, приведены в таблице 6. Все флюсы, применяемые для сварки алюминия и его сплавов, гигроскопичны, поэтому они активно поглощают влагу. Во избежание повышенного влагосодержания флюсы следует хранить в герметической таре. Оставшиеся после сварки флюсы удаляют промывкой в горячей воде, так как они способствуют возникновению коррозии шва.

Таблица 6. Флюсы для газопламенной обработки алюминия

Компонент Марка флюса и состав (по массе), %
АФ-4А АН-А201 АН-4А ВАМИ КМ-1
Хлористый калий 55 - - 50 45
Хлористый натрий 28 -   30 20
Хлористый литий 14 15 - - -
Хлористый барий - 70 - - 70
Фтористый натрий 3 - 70 - 15
Фтористый литий - 15 30 - -
Криолит - - - 20 -

Газовая сварка свинца

Трудности, возникающие при сварке свинца, вызваны большой разницей температуры плавления основного металла и его оксидов. Так, свинец плавится при температуре 327°С, а его оксиды — при температуре около 888°С. Поэтому сварку свинца следует вести нормальным пламенем после тщательной предсварочной подготовки. Предсварочная подготовка свинцовых кромок подобна той, которую применяют при сварке алюминия и его сплавов. Защиту сварочной ванны выполняют флюсом, в качестве которого при небольших толщинах свариваемого металла применяют стеарин, которым натирают кромки свариваемых деталей перед сваркой. При больших толщинах свариваемых кромок в качестве флюса используют смесь стеарина с канифолью.

Жидкотекучесть свинца вызывает трудности при сварке вертикальных швов. Такие швы в большинстве случаев накладывают при помощи кристаллизатора, представляющего собой полукольцо (рис. 2). Кристаллизатор прикладывают к свариваемым кромкам и после кристаллизации сварочной ванны, заполняющей его полость, перемещают вверх. В качестве присадочного материала применяют свинцовую проволоку или полоски свинца.

Сварка вертикального шва с кристаллизатором

Рис. 2. Сварка вертикального шва с кристаллизатором: 1 — кристаллизатор; 2 —  присадочный пруток; 3 — горелка

Резаки для кислородной резки

Набор оборудования, предназначенный для кислородной резки, отличается от набора для газовой сварки только наличием резака, который заменяет собой сварочную горелку. Резаки служат для образования смешивания горючих газов или жидкостей с кислородом, образования подогревающего пламени и подачи в зону реза струи чистого кислорода. Отличаются резаки от сварочных горелок наличием трубки и вентиля для режущего кислорода, а также особым устройством головки.

Резаки отличаются:

  • по виду резки (для разделительной и поверхностной резки)
  • по назначению (для ручной и механизированной резки)
  • по роду горючего (ацетиленовые, для газов-заменителей, жидких горючих смесей)
  • по принципу действия (инжекторные и безынжекторные)
  • по давлению кислорода (низкого и высокого)
  • по конструкции мундштуков (щелевые и многосопловые).

Наибольшее применение получили инжекторные щелевые резаки для разделительной резки со щелевыми мундштуками. Основные данные на такие резаки отражены в таблице 1.

Таблица 1. Характеристики инжекторных щелевых резаков

Показатель Данные показателя
Толща нарезаемой тали, мм 3-5 5-25 25-50 50-100 100-200 200-300
Номер наружного мундштука 1 2
Номер внутреннего мундштука 1-2 2-3 3-4 5
Давление режущего кислорода, кг/см 3 4 6 8 10 12
Расход кислорода, м³/ч 3 6 10 15 26 40
Расход ацетилена, м³/ч 0,4 0,6 0,8 0,9 1,0 1,0
Расход пропан-бутана, м³/ 0,3 0,4 0,5 0,6 0,7 0,8
Давление ацетилена, кг/см 0,001
Давление других горючих газов, кг/см (не менее) 0,005

Каждый резак имеет рукоятку с запорно-регулировочными вентилями для кислорода и горючего газа, головку со сменными мундштуками, штуцеры со съемными вентилями и инжекторное устройство. На каждом маховичке вентилей нанесено наименование газа (кислород режущий, кислород и горючий газ), стрелки, указывающие направление вращения при открывании и закрывании («О» — открыто и «3» — закрыто).   На сменных мундштуках наносят их номера и индекс, указывающий, для какого горючего газа они предназначены: «А» — ацетилен, «П» — пропан-бутан, «ПГ» — природный газ. Накидная гайка и штуцер, служащие для присоединения к рукоятке ниппеля для горючего газа, имеют левую резьбу. Кислородный ниппель присоединяется накидной гайкой с правой резьбой. На кислородном штуцере нанесена буква «К» (кислород).

Вставной резак (рис.1) превращает сварочную горелку в режущий инструмент. Он является самым удобным приспособлением для скашивания кромок изделий, которые должны присоединяться встык. Особенно удобны такие резаки при частых переходах от одной операции (от резки к сварке) к другой. Все вставные резаки конструктивно однотипны и различаются устройством головок и мундштуков, имеющих специальное назначение.

Использование сварочной горелки в качестве резака путем применения вставочного резака

Рис. 1.  Использование сварочной горелки в качестве резака путем применения вставочного резака

Инжекторные резаки отличаются разнообразием конструкций. Поэтому рассмотрим резак типа «Пламя» (рис.2), который используют для ручной разделительной резки низкоуглеродистых и низколегированных сталей кислородной струей с использованием подогревающего пламени, образуемого ацетиленом и кислородом. Технические характеристики этого типа резаков приведены в таблице 2.

Резак типа «Пламя»

Рис. 2. Резак типа «Пламя»: А — общий вид; Б — вид в разрезе; В — вид сверху; 1 — головка; 2 — вентилятор кислородный; 3 — инжектор; 4 — кислородный вентиль; 5 — ацетиленовый вентиль; 6 — ниппель кислородный; 7 — ниппель ацетиленовый 

Таблица  2. Характеристики инжекторных резаков

Показатель Толщина разрезаемого металла
3-6 6-25 50 100 200 300
Номер мундштука
   -внутреннего
   -наружного
1
1
2
1
3
1
4
2
5
2

5
2

Давление ацетилена, кг/см² Не ниже 0,01
Давление кислорода, кг/см² 3,5 4 6 8 11 14
Расход ацетилена, м3/ч 0,6 0,7 0,8 0,9 1,0 1,2
Расход кислорода , кг/см² 3 5,2 8,5 18,5 33,5 42
Ширина раза, ми 2-2,5 2,5-3,5 3,5-4,5 4,5-7 7-10 10-15
Скорость резки, мм/мин 550 370 260 165 100 80
Габаритные размеры, мм 550x64x160
Масса, кг 1,5

Керосино-кислородные резаки конструктивно отличаются от обычных газовых, так как для получения высокотемпературного пламени необходимо превращение жидкости в парообразное состояние. Этот процесс происходит в передней части корпуса резака за счет тепла, получаемого вспомогательным подогревом или механическим распылением керосина кислородом. В последнем случае испарение керосина происходит в мундштуке.

Конструкцию керосино-кислородного резака рассмотрим на модели РК-62 (рис.3). Такие резаки могут работать с применением пропано-бутановых смесей, но для этого нужно удалить оплетку с инжекторной трубки. Производительность резака при этом уменьшится. В зависимости от толщины разрезаемого металла в головке резака устанавливают различные внутренние мундштуки.

 Керосино-кислородный резак РК-62

Рис. 3.  Керосино-кислородный резак РК-62: 1 — внутренний мундштук; 2 — наружный мундштук; 3 — головка; 4 — труба режущего кислорода; 5 — асбестовая оплетка; 6 — маховичок режущего кислорода; 7 — вентиль для керосина; 8 — трубка подачи керосина; 9 — рукоятка; 10 — трубка для кислорода; 11 — корпус резка; 12 — трубка подогревающего кислорода; 13 — маховичок для регулирования подачи горючего; 14 — щиток; 15 — испаритель; 16 — инжектор; 17 — смесительная камера; 18 — подогревающее сопло.