Понятие о фундаментах

Рис. 1. Прямоугольный и ступенчатый фундамент
Рис. 1. Прямоугольный и ступенчатый фундамент
Рис. 2. Примерный план фундамента свайного для летнего садового дома (стены деревянные)
Рис. 2. Примерный план фундамента свайного для летнего садового дома (стены деревянные)
Рис. 3. Вынос осей в натуру
Рис. 3. Вынос осей в натуру: 1 - поперечная ось; 2 - обноска; 3 - осевая струна; 4 - точки пересечения осей; 5 - причалка; 6 - штыри; 7 - отвес; а - продольная ось
Рис. 4. Схема определения горизонтальности основания
Рис. 4. Схема определения горизонтальности основания:
1 - неподвижная визирка; 2 - ходовая визирка; 3 - колышки
Рис. 5. Схема установки фундаментных блоков и фундаментов под колонны
Рис. 5. Схема установки фундаментных блоков и фундаментов под колонны: а) 1 - маячные блоки; 2 - причалка; б) 1, 2 - риски
Рис. 6. Порядок установки стеновых блоков
Рис. 6. Порядок установки стеновых блоков: 1 - панель стены; 2 - жесткий подкос со струбциной; 3 - жесткая горизонтальная связь; 4 - жесткая угловая связь со струбцинами; I - первая панель; II, III, IV - панели и т.д.
Рис. 7. Перемещение блоков с помощью монтажного ломика
Рис. 7. Перемещение блоков с помощью монтажного ломика: а - лапой от себя; б - лапой в сторону; в - лапой на себя

Фундамент — одна из самых ответственных частей здания, воспринимающая нагрузку от надземных частей здания. Фундаментом называется подземная часть здания, передающая нагрузку от надземных частей здания на основание. Подошвой фундамента называется нижняя часть фундамента, совмещенная с поверхностью основания. Глубиной заложения фундамента называется расстояние от планировочной отметки до подошвы фундамента. Основанием называется толща грунта, воспринимающая нагрузку от сооружения. Грунты основания бывают скальные и нескальные. Скальные грунты — это изверженные, осадочные и метаморфические породы, которые имеют жесткую связь между частицами. Скальные породы залегают сплошным или трещиноватым слоем, но, несмотря на это, скальные породы как основание обладают большой прочностью. Нескальные породы — крупнообломочные, песчаные и глинистые. Грунты основания могут быть однородными и неоднородными. Основания называются однородными, если они состоят из одного грунта, и неоднородными, если состоят из нескольких слоев грунта. Основания бывают естественными и искусственными. Естественными называются такие грунты, в качестве которых используют грунты природного залегания; если перед устройством фундамента основание нужно предварительно уплотнять, то оно называется искусственным.

История фундамента

Фундаменты начали возводить еще в глубокой древности, одновременно с развитием строительства. Большое место среди фундаментов занимали свайные постройки, которые устраивались в устьях рек и предназначались для защиты от зверей и врагов. В дальнейшем назначение свай изменилось, однако они широко применялись. Сооружения, построенные на хороших основаниях, отличаются большой долговечностью, некоторые из них сохранились до наших дней. В качестве примера можно привести пирамиду Хеопса, вес ее около 6 млн. тонн, нагрузка на основание в среднем — 12 кг/см2. Уже в глубокой древности имелись труды по фундаментостроению. Так, римский инженер Витрувий (1 век до н.э.) дал указание в своих трудах по практическому возведению фундаментов. В древних летописях нашей страны также найдены указания по возведению фундаментов. Однако все данные были основаны только на основании опыта возведения фундаментов, и не было никаких теоретических основ расчета фундамента и оснований. В XVIII веке сильно шагнула вперед наука во всех областях, появились первые теоретические разработки науки фундаментостроения. В 1773 году французский ученый Кулон дал теорию расчета сопротивления грунтов сдвигу, а так же формулу для расчета давления грунта на подпорную стенку. В 1841 году французский ученый Трижо предложил способ возведения кессонных фундаментов. В XIX веке был открыт железобетон, он стал ведущим в возведении фундаментов. В 1809 году было открыто явление электроосмоса, которое заключается в том, что частицы воды двигаются в направлении отрицательного заряда. В дальнейшем это явление нашло большое практическое применение в основаниях для разработки котлованов в водонасыщенных грунтах. В 1899 году киевский ученый А.Э. Страус предложил набивные сваи, которые устраиваются в пробуренных скважинах. Он же позднее предложил опускать в скважины арматуру, и затем заливать их бетоном. Первый научный труд «Основания и фундаменты» был написан в 1869 году Карловичевым, в котором были приведены все известные положения. Много сделано в развитии науки об основаниях и фундаментах после Октябрьской революции: в 1929 году был образован сектор оснований и фундаментов, который был преобразован в институт оснований и фундаментов. Теперь перейдем к практическим занятиям и разберем наиболее доступные способы устройства фундамента, применимые для малоэтажных жилых домов.

Виды фундаментов для малоэтажных зданий

Существует множество видов фундаментов, однако рассмотрим простые, применяемые для строительства жилых домов малой этажности. Жесткие ленточные и столбчатые фундаменты выполняются из бетона, бутобетона, бутовой кладки, т. е. из тех материалов, которые хорошо работают на сжатие. Бутовая кладка ведется на цементном растворе или сложном цементном растворе. Предварительно проектом определяется площадь подошвы фундамента и все характеристики грунта (давление на грунт основания, объемный вес между материалом фундамента и грунтом, а также глубина заложения). Большинство грунтов обладают способностью вспучиваться при замерзании, также значение имеет уровень грунтовых вод. В зависимости от всех перечисленных свойств грунтов принимается окончательная глубина заложения фундамента. При небольших нагрузках принимается прямоугольная форма сечения фундамента (рис. 1, а), при больших нагрузках и слабых грунтах высота фундамента получается очень большой, в этом случае необходимо выполнить ступенчатый фундамент (рис. 1, б).

Наиболее экономичными являются свайные фундаменты. Для устройства свайного фундамента в обыкновенном грунте бурят скважины диаметром 20—25 см, глубиной 70—90 см. При этом можно использовать самодельный бур, его выполняют из листовой стали, приваренной к верхней части стальной трубы, в виде спирали. В подготовленную скважину вставляется асбоцементная труба диаметром 20 см и заполняется на треть высоты бетонной смесью. После этого трубу слегка приподнимают для образования под ней бетонного основания. Затем заполняют трубу бетоном, уплотняя его металлическим стержнем до уровня, находящегося ниже верха трубы на 10 см. Таким образом, изготавливают сваи. Через два-три дня на верхнюю грань сваи укладываются деревянные бруски, которые образуют раму пола. После выравнивания продольных балок привинчивают металлические анкерные элементы, их нижняя часть бетонируется в асбоцементных трубах. Данный способ устройства свайного фундамента применяется при строительстве легких садовых домиков (рис. 2), а также с большим заглублением и более прочным каркасом для кирпичных домов (рис. 1, а, б и рис. 5). Фундаменты, у которых плоская подошва, имеют название «ленточные» (рис. 3). Те, что закладываются под стены, или столбчатые, — выполняются под отдельно стоящие колонны или столбы. Фундаменты могут быть свайными, если здание опирается на погруженные в грунт сваи из бетона, железобетона, иногда из дерева.

Монтаж железобетонных фундаментов

Рассмотрим монтаж железобетонных фундаментов. До начала монтажных работ необходимо проверить правильность разбивки осей здания — эту работу производят геодезисты или инженер-строитель. Разбивка осей (1 а) (см. рис. 3) — это перенос осей с чертежа на основание, предназначенное для устройства фундамента. Из деревянных колышков и реек выполняется обноска (2), натягиваются струны осей (3) и отвесами (7) определяют точки пересечения осей (4) на дне котлована. С помощью точек, что определились ранее, замеряют проектные размеры фундамента и закрепляют их металлическими штырями (6), чтобы не сместились. Причалка (5) должна находиться на 2—3 мм дальше боковой грани ленточного фундамента. Фундаменты под колонны и столбы устраивают так же, как и ленточные, но, кроме того, размечают грани и углы фундаментов.

Если грунты песчаные, фундаментные блоки укладываются непосредственно на выровненное основание, при других видах грунта — устраивается песчаная подушка толщиной 10 см. Грунт под подошвой фундамента не может быть не насыпным, не разрыхленным, если таковой имеется, его необходимо удалить, а взамен насыпать щебень и песок, после чего тщательно утрамбовать. Ямки в основании заполняются бетоном. Для определения горизонтальности основания, отведенного под фундамент, в начале и в конце ставят контрольные неподвижные визирки 1, чтобы верх визирки был выше отметки основания на длину переносной ходовой проверочной визирки 2. Уровень контрольных визирок проверяют каждый день с помощью нивелира или по обноске. Между визирками 1 забивают в основание колышки 3, на которые ставится ходовая проверочная визирка (рис. 4).

Монтажники, чтобы проверить горизонтальность основания, используют правило, устанавливают неподвижные визирки на забитые колышки и выравнивают, подсыпая или срезая грунт на участке. Правило должно плотно прилегать к песчаному основанию во всех направлениях. Чтобы фундаментные блоки не свисали с песчаной подушки, длина и ширина песчаного основания делается больше на 200—300 мм (рис. 4). Кран, с помощью которого устраиваются фундаментные блоки, не должен находиться на слишком близком от края котлована расстоянии, чтобы не произошло обрушение.

Устройство фундаментных блоков начинается с установки маячных блоков (1) по углам и в местах пересечения стен (рис. 5, а). После укладки маячных блоков по грани фундаментной ленты натягивают причалку (2), подняв ее до уровня наружного ребра блоков, затем по причалке укладываются все остальные блоки. После укладки блоков тщательно выверяется горизонтальность положения, и если оно нарушено снова перекладывают блоки. Разрывы между фундаментными блоками, предусмотренные проектом, а также боковые пазухи временно засыпаются песком или песчаным грунтом, чтобы не возникали деформации.

При установке блока на размеченное место нельзя нарушать поверхность основания, стропы можно снимать только после установки фундаментного блока в заданное место согласно проекту. Между блоками должно быть оставлено расстояние для прокладки труб водоснабжения и канализации, теплоснабжения, электроснабжения и др. Места сопряжений между блоками продольных и поперечных стен заливаются бетонной смесью. Монтаж фундаментов под колонны выполняется, как сказано ранее, с помощью отвеса и колышков точно фиксируют положение осей. Контроль правильности опускания блока на основание ведется с помощью рисок (1), (2), нанесенных на середину боковой грани блока краской (рис, 5, б). По окончании монтажных работ по укладке фундамента выполняют планово-высотную посадку с привлечением инженеров или геодезистов и по всем результатам измерений выполняется исполнительная съемка. На этой съемке изображается фактическое расположение фундаментных блоков по высоте и в плане. Допустимые отклонения от проекта должны не превышать по высоте 10 мм и в плане ±10 мм от осей разбивки.

Монтаж стеновых блоков подвала

Стеновые блоки устанавливают после проверки правильности укладки фундаментных блоков. Прежде всего, очищается поверхность фундаментных блоков и наносится гидроизоляция — слой раствора 20—30 см, он же служит выравнивающим слоем. Разметка производится так же, как и при устройстве фундаментных блоков, по монтажной схеме размечают положение блоков первого ряда, отметив места вертикальных швов. Монтажники до начала работы подготавливают инструменты, расчищают верхнюю поверхность фундамента от загрязнения, ящик с раствором располагают так, чтобы не переставлять его в процессе укладки 3—4 блоков, т. е. на расстоянии 2—2,5 м. Подготовка постели для укладки блоков выполняется последовательно: сначала очищается поверхность блоков, смачивается водой, раствор раскладывается и разравнивается с помощью лопаты, но разравнивать раствор лучше всего рейкой, с помощью которой достигается идеально гладкая поверхность, причем сохраняется толщина слоя. Стеновые блоки начинают монтировать с маячных блоков в углах и на местах пересечений стен, поднимают блоки за две петли краном и укладывают на постель из раствора.

Контроль укладки производится по осям маячных блоков, по рискам. По визиркам проверяется высота. При обнаружении неправильности укладки, блок поднимают, раствор с нижней грани счищают, добавляют раствор на постель, где был перекос, и снова укладывают блок (рис. 6).

Смонтированные маячные блоки служат ориентиром при установке рядовых блоков, на специальных скобах закрепляют причалку и по ней кладут на растворе блоки. При монтаже нельзя браться рукой за торец блока. Так как она может быть защемлена между блоками. После, установки, контроля, кельмой срезается лишний раствор с горизонтальных швов, а если раствора не хватает, добавляют и уплотняют. После укладки двух первых рядов, укладку последующих ведут так же, как предыдущие, так же размечая на нижнем ряду укладку верхнего слоя. После укладки первых рядов, и для укладки следующих требуются подмости. О них поговорим ниже. Приведем несколько приемов, чтобы переместить блок с места: 1) Перемещают с помощью лома, лапа лома направлена от себя, причем оттянутый конец лома заводится под блок и отжимается на себя, блок при этом приподнимается и, соскользнув с лапы, продвигается вперед (рис. 7, а). 2) Лапой в сторону — оттягивается конец лома, заводится под блок под острым углом к лицевой грани. После этого на лом нажимают и проворачивают на пятке лапы в сторону, блок приподнимается и перемещается, как показано на рис. 7, б. 3) Лапой на себя — оттягивается конец лома, заводят под блок, нажимают на конец лома, приподнимая и перемещая блок на себя (рис. 7, в). Если толщина шва большая, тогда прием лопатой от себя выполняется острым концом лома.

Укладка блоков стен подвала. Устройство фундаментов и стен подвала должно выполнять звено, в состав которого входят четыре рабочих, в том числе — машинист крана, монтажник не ниже 4 разряда, монтажник 3 разряда и такелажник. Такелажник выполняет очень ответственную работу: вначале он подбирает нужный блок, стропует его, проверяет надежность строповки, дает сигнал крановщику, контролирует подъем блока. Монтажники принимают, а потом устанавливают блок в проектное положение.

Грунты и их влияние на выбор фундаментов

Основанием любого фундамента является грунт, от несущей способности которого зависит надёжность всего строения. Основание может быть естественным и искусственным. Для правильной привязки проекта к местности нужен целый ряд показателей, среди которых — тип грунта, глубина его промерзания, насыщенность почвенными водами, уровень грунтовых вод, рельеф поверхности и т.д.

К естественным относятся все категории грунтов, структура которых формировалась веками под действием природных процессов. Все насыпные грунты, а также грунты, к которым применялись технологии укрепления, считаются искусственными.

Естественные грунты условно можно разделить на скальные и нескальные. Скальные грунты представляют собой сцементированные и спаянные, залегающие в виде сплошного массива или трещиноватого слоя породы. Скальные грунты характеризуются высоким показателем прочности при сжатии в водонасыщенном состоянии. Это могут быть массивы изверженных пород с кристаллической структурой, характеризующейся значительной плотностью и малой влагоемкостью, или слоистые структуры, представляющие собой осадочные породы, сложенные из песчаников, известняков, доломитов и глинистых сланцев. Скальные грунты являются хорошим основанием для строительства, поэтому на них можно возводить дом любых габаритов и этажности, не опасаясь просадок и усадок. Единственная сложность, с которой неизбежно столкнется владелец участка, это разработка скального грунта.

К нескальным грунтам относят: крупнообломочные, песчаные и глинистые структуры. Крупнообломочные несцементированные грунты, которые содержат более 50% массы обломков кристаллических пород с размерами частиц более 2 мм. Как правило, несущая способность таких грунтов достаточно высока и может выдержать вес дома в несколько этажей. Песчаные сыпучие грунты в сухом состоянии содержат менее 50% массы частиц от 1 до 2 мм и не обладают пластичностью. Пески состоят из жестких частиц, имеющих форму зерен. В зависимости от размера частиц различают гравелистые, крупные, средние, мелкие и пылеватые пески. Плотные, равномерно залегающие крупные или средние пески, не размывающиеся водой, практически не подвержены вспучиванию. Песчаные грунты в своем большинстве являются идеальной основой для строительства при условии, что они не подвергаются размывающему действию грунтовых вод. Все преимущества песчаных грунтов проявляются особенно ярко, если уровень грунтовых вод находится ниже уровня промерзания, характерного для данного региона. Если уровень грунтовых вод в песчаных грунтах выше глубины промерзания, то сооружать фундаменты следует с обязательным армированием стальными прутами (рис. 1 и 2).

Поперечное армирование фундаментов Столбчатый круглый фундамент на песчаной подушке
Рис. 1. Поперечное армирование фундаментов: А — прямоугольными сетками; Б — зигзагообразными сетками.  Рис. 3. Столбчатый круглый фундамент на песчаной подушке (размеры в мм): 1 — круглый башмак; 2 — утрамбованный песок; 3 — кольцо фиксирующее. 
Вертикальное армирование столбчатых фундаментов Рис. 2. Вертикальное армирование столбчатых фундаментов: А — столб треугольного сечения; Б — столб прямоугольного сечения; 1 — закладываемые арматурные стержни. 

Чем крупнее песок, тем большую нагрузку он может воспринимать. Сжимаемость плотного песка невелика, а скорость уплотнения под нагрузкой значительна. Поэтому осадка зданий, основанием которых является песок, быстро прекращается. Пески имеют большую водопроницаемость и поэтому не обладают свойствами пучения при замерзании.

Водонасыщенные пылевато-песчаные грунты с примесью мелких глинистых частиц называются плывунами. Они не могут служить основанием для фундаментов дома из-за большой подвижности и низкой несущей способности. Глинистые связанные грунты с пластичностью 0,01 состоят из очень мелких частиц, размеры которых меньше 0,005 мм. В отличие от песчаных грунтов глины имеют тонкие капилляры и большую поверхность соприкосновения частиц между собой. Глинистые грунты способны сжиматься, размываться. При этом сжимаемость глины выше, чем у песков, а скорость уплотнения под нагрузкой меньше. Поэтому осадка зданий, фундаменты которых размещаются на глинистых грунтах, продолжается более длительное время, чем на песчаной почве. Глинистые грунты с песчаными прослойками легко разжижаются и поэтому обладают небольшой несущей способностью. Сухая глина, слежавшаяся в течение многих лет, считается хорошим основанием для фундамента дома. Глина, поры которой заполнены влагой, при промерзании пучится, увеличиваясь в объеме. Морозное пучение грунтов относится к физико-механическим процессам, в результате которых промерзающий грунт приобретает напряженно-деформированное состояние под действием термодинамических изменений. Суть этих процессов: присутствующая в грунте влага увеличивается в объеме, в результате чего происходит подъем грунта. И чем больше влаги находится в грунте, тем сильнее он увеличивается в объеме при замерзании. В пористых грунтах это явление менее заметно, так как при замерзании грунт расширяется в сторону пор, заполняя пустоты. И чем больше пористый грунт, тем меньше вероятность его пучения. Кроме того, промерзание грунта происходит постепенно и начинается этот процесс сверху, проникая все глубже и глубже. Замерзший грунт начинает вытеснять находящуюся в нем влагу, которая через поры уходит в нижние слои грунта. В пористых грунтах влага беспрепятственно проходит сквозь поры и пучение грунта не происходит. Глина же, как известно, плохо пропускает влагу, она не уходит вниз, вызывая тем самым подъем замерзшего грунта.

Суглинки и супеси представляют собой смесь песка, глины и пылеватых частиц. Суглинки содержат от 10 до 30% глинистых частиц, супеси — от 3 до 10%. По своим свойствам эти грунты занимают промежуточное положение между глиной и песком. Грунты с органическими примесями (растительный грунт, ил, торф, болотный грунт и т.п.) неоднородны по своему составу, рыхлы, обладают большой и неравномерной сжимаемостью, поэтому в качестве естественных оснований непригодны.

Искусственные основания состоят преимущественно из насыпных грунтов. В отличие от естественных, насыпные грунты имеют неоднородный состав и сложение, неравномерную сжимаемость, способность уплотняться с течением времени под действием собственного веса и приложенных нагрузок. Такие грунты в большинстве случаев (за исключением регулированных насыпных грунтов) не используются в качестве естественного основания. К просадочным грунтам с возможной просадкой от собственного веса более 5 см принимают меры по укреплению или устранению возможности просадки. Для этого:

  • грунт уплотняют тяжелыми трамбовками;
  • устраивают песчаные подушки (рис. 3);
  • предварительно замачивают грунты в пределах всей просадочной площади;
  • увеличивают величину заглубления фундамента до отметки ниже просадочных грунтов;
  • устанавливают по периметру фундамента буро-набивные сваи;
  • используют водозащитные меры для предотвращения возможных просадок.

В зависимости от состояния грунта может быть применен один из способов его укрепления, предназначенный для увеличения несущей способности. Чаще всего такая надобность возникает при возведении зданий двух и более этажей. Строительная практика обладает многими способами искусственного укрепления грунтов. Необходимость искусственного укрепления грунтов может определяться проектом.

Основания фундаментов

Основание — часть массива грунта, на которую передается нагрузка от сооружения. Основание называется естественным, если фундамент возводится непосредственно на грунте природного сложения, и искусственным, когда несущая способность грунта увеличена различными способами.

Конструкция фундамента во многом определяется характеристиками грунта, на котором он возводится. Грунт основания должен быть прочным и иметь незначительную сжимаемость и пучинистость. Однако не все грунты обладают такими свойствами. Например, торфяные грунты сильно сжимаются под нагрузкой, а некоторые грунты из группы глинистых при замачивании под нагрузкой дают дополнительные осадки (просадки) или подъем (набухают). Строительство домов на таких грунтах требует проведения различного рода мероприятий, связанных с осушением застраиваемого участка и предотвращением увлажнения основания фундаментов.

 

Виды грунтов

Грунты, применяемые в качестве основания, подразделяются на глинистые, песчаные, крупнообломочные, скальные и насыпные.

Скальные грунты — наиболее надёжные. Они прочны, не проседают, не размываются и не вспучиваются. Залегают в виде сплошного массива, что редко встречается в Московской области и прилегающих областях. Фундамент можно возводить непосредственно на поверхности такого грунта, без заглубления.

Крупнообломочные грунты — несцементированный грунт, содержащий песок и более 50% по массе частицы крупнее 2 мм. Подразделяются на два вида. Грунт щебенистый (галечниковый) - масса частиц крупнее 10 мм составляет более 50% массы сухого грунта и грунт дресвяный (гравийный) — масса частиц крупнее 2 мм составляет более 50%. Такой грунт практически не сжимается, и фундамент можно закладывать с заглублением не менее 0,5 м.

Песчаные грунты — сыпучие в сухом состоянии, не обладающие пластичностью во влажном состоянии и содержащие менее 50% по массе частиц крупнее 2 мм. В зависимости от крупности частиц и их количества песчаные грунты подразделяются на пять видов.

Виды песчаных грунтов

Виды грунтов Распределение частиц грунта по крупности в % от массы сухого грунта
Песок гравелистый  Масса частиц крупнее 2 мм составляет более 25% 
Песок крупный  Масса частиц крупнее 0,5 мм составляет более 50% 
Песок средней крупности  Масса частиц крупнее 0,25 мм составляет более 50% 
Песок мелкий  Масса частиц крупнее 0,1 мм составляет более 75% 
Песок пылеватый  Масса частиц крупнее 0,1 мм составляет менее 75% 

Примечание. Для установления наименования грунта последовательно суммируются проценты содержания частиц исследуемой породы сначала крупнее 10 мм, затем крупнее 2 мм, далее крупнее 0,5 мм и т.д. Наименование грунта принимается по первому удовлетворяющему показателю в порядке расположения наименований в таблице.

Песчаные грунты разделяются на плотные, средней плотности и рыхлые в зависимости от значений коэффициента (плотности) пористости. По влажности песчаные грунты разделяются: на мало влажные — при заполнении водой до 50% пор; очень влажные — от 50 до 80%; насыщенные — более 80%. Эти показатели необходимы для расчета несущей способности грунтов. Песчаные грунты имеют свойство уплотняться под нагрузкой, т.е. проседать. Прочность песчаных оснований возрастает с увеличением размера частиц. Пески средней крупности при воздействии нагрузки деформируются незначительно и, как и крупные пески, слабо реагируют на увлажнение. Мелкие же пески при увеличении влажности заметно теряют несущую способность. Эти грунты фильтруют воду и промерзают без пучения.

Суглинки и супесь — грунты, занимающие промежуточное положение между песчаными и глинистыми грунтами. При содержании глины от 10 до 30% грунт относят к суглинкам, а при более низком содержании глины — к супеси.

Глинистые грунты — связанные, обладающие во влажном состоянии пластичностью. Такие грунты могут сжиматься, размываться и при замерзании вспучиваться. При таком основании грунта необходимо закладывать фундамент на всю глубину промерзания.

Лёссы и лёссовидные грунты в сухом состоянии достаточно устойчивы в силу наличия прочных структурных связей. Однако при увлажнении эти связи нарушаются, и грунт под нагрузкой проседает.

Торф, представляющий собой смесь глинистых или песчаных грунтов с растительными остатками, характеризуется медленным развитием осадок и большой сжимаемостью. Кроме того, в торфе зачастую возникают среды, агрессивные по отношению к материалам, из которых устроены подземные конструкции здания.

 

Простейшие методы самостоятельного определения некоторых видов грунта

Глина в сухом состоянии тверда в кусках, вязка, пластична, липка, мажется — во влажном. При растирании между пальцами песчаных частиц не чувствуется, комочки раздавливаются очень трудно, песчинок не видно. При скатывании в сыром состоянии образуется длинный шнур диаметром менее 0,5 мм, а при сдавливании шарик превращается в лепешку, не трескаясь по краям; при резке ножом в сыром состоянии имеет гладкую поверхность, на которой не видно песчинок.

Суглинок — комья и куски в сухом состоянии менее тверды, при ударе рассыпаются на мелкие куски, во влажном состоянии имеют слабую пластичность и липкость, при растирании чувствуются песчаные частицы, комочки раздавливаются легче, ясно видны песчинки на фоне тонкого порошка; при скатывании в сыром состоянии длинного шнура не получается, он рвется; шар, скатываемый в сыром состоянии, при сдавливании образует лепешку с трещинами по краям.

Супесь — в сухом состоянии комья легко рассыпаются и крошатся от удара, непластична, преобладают песчаные частицы, комочки раздавливаются без удара, почти не скатываются в шнур; шар, скатанный в сыром состоянии, при легком давлении рассыпается.

Песок пылеватый напоминает пыль или жесткую муку типа крупчатой, отдельные зерна в массе трудноразличимы.

Песок мелкий имеет зерна, слабо различимые глазом, песок средней крупности в основной массе имеет зерна размером с просяное зерно, в крупном песке - большое количество зерен с размером гречневой крупы.

Гравий (дресва) — зерна размером от 5 — 7 до 10 — 12 мм составляют больше половины по массе. Между ними более мелкое заполнение. Гравий имеет частично окатанные формы, дресва - с острыми краями.

Галька (щебень) —  зерна размером более 25 — 35 мм составляют более половины по массе. Между ними —  мелкое заполнение. Галька — окатанной формы, щебень —  остроугольный.

Песчаные, гравийные и галечниковые грунты —  не связные.

Прочность основания будет обеспечена, если давление, которое передается фундаментом на грунт, не более расчетного для грунтов, залегающих под фундаментом.

Несущая способность грунтов характеризуется величиной нормативного давления на грунт, выраженная в кН/см2. Величина нормативного давления различных грунтов (в кГ/см2) указана в строительных нормах и правилах (СНиП Н-Б. 1—62).

Искусственные основания устраивают путем укрепления слабых грунтов различными способами. К слабым грунтам относятся грунты с органическими примесями и насыпные грунты.

Грунты с органическими примесями включают: растительный грунт, ил, торф, болотный грунт. Насыпные грунты образуются искусственно при засыпке оврагов, прудов, мест свалки. Перечисленные грунты неоднородны по своему составу, рыхлые, обладают значительной и неравномерной сжимаемостью. Поэтому в качестве оснований их используют только после укрепления уплотнением, цементацией, силикатизацией, битумизацией или термическим способом.

Уплотнение грунтов производят трамбовочными плитами, пневматическими трамбовками, катками, вибраторами (поверхностное уплотнение), а также путем устройства так называемых грунтовых свай (глубинное уплотнение). Этот способ применяют при недостаточно плотных грунтах, в том числе насыпных.

Цементация грунтов состоит в нагнетании в них с помощью специальных труб жидкого цементного раствора или цементного молока, которые после затвердевания придают им камневидное состояние. Цементацию применяют для укрепления слабых песчаных грунтов, кроме мелкозернистых и пылеватых.

Силикатизация грунтов заключается в нагнетании в них силикатных растворов, в результате химической реакции которых происходит окаменение грунта. В качестве силикатных растворов обычно используют жидкое стекло и хлористый кальций. Способ силикатизации применяют для закрепления слабых песчаных грунтов, плывунов, лёсса.

Битумизация состоит в нагнетании в грунт разогретого битума. Этот способ применяют для закрепления крупнозернистых песчаных грунтов, обломочных и трещиноватых скальных.

Термический способ заключается в том, что производят разными способами нагрев грунта до спекания, в результате чего слабый грунт превращается в камневидный. Этот способ используют для укрепления лёссовых проезд очных грунтов.

Искусственные основания удорожают стоимость строительства зданий и сооружений, поэтому их устраивают в необходимых случаях с обязательным технико-экономическим обоснованием.

Разработка котлованов под фундамент

Способы разработки грунта принимаются в зависимости от конструкции и глубины заложения фундамента. Грунты под малозаглубленные ленточные и столбчатые фундаменты могут разрабатываться вручную, а выемка грунта под заглубленные фундаменты и фундаменты с цокольным (подвальным) этажом разрабатывается механизированным способом. Учитывая то, что ширина индивидуального дома редко превышает 12—15 м, разработку котлована можно вести экскаватором, оборудованным обратной лопатой, с ёмкостью ковша 0,25—0,65 м3 на гусеничном или колесном шасси или экскаватором-погрузчиком (рис. 1).

Схема разработки котлована экскаватором Крутизна откосов котлованов и траншей в грунтах естественной влажности
Рис. 1. Схема разработки котлована экскаватором: 1 — экскаватор; 2 — грунт для обратной засыпки; 3 — недобор грунта экскаватором 10—15 см  Рис. 2. Крутизна откосов котлованов и траншей в грунтах естественной влажности: а — песчаный грунт; б — супесь; в — глины и суглинки 

Недобор грунта разрабатывается вручную перед устройством фундамента. При разработке грунта в радиус действия экскаватора не должны попадать провода линии электропередач. Грунт, выбираемый из котлована (траншеи), необходимо размещать на расстоянии не менее 1 м от края разработки. Рытье котлована и траншей с вертикальными стенками без крепления можно производить только в грунтах естественной влажности и при отсутствии грунтовых вод.

Глубина выемки, м, не должна превышать:

  • в песчаных и гравелистых грунтах — 1;
  • в супесчаных — 1,25;
  • в глинах и суглинках — 1,5;
  • в особоплотных грунтах — 2,0.

Работы по сооружению фундамента в траншеях без креплений следует производить сразу же за отрывкой грунта во избежание его осыпания или сползания. Если в траншее будут находиться люди, ширина ее должна быть не менее 0,7 м с учётом креплений.

Соблюдение правил производства земляных работ позволит избежать выполнения дополнительных работ из-за обрушения и сползания откосов, перебора выемки грунта и др.

Разработка котлована и траншей на глубину, превышающую пределы, указанные выше, производится с откосами или с креплением вертикальных стенок. Допустимая крутизна откосов котлованов и траншей в грунтах естественной влажности показана на рис. 2.

Минимальная ширина траншей должна удовлетворять следующим требованиям:

под ленточные фундаменты и конструкции подвального этажа — с учётом размеров конструкции, опалубки и ее крепления с добавлением 0,2— 0,3 м с каждой стороны;

под трубопроводы — не менее наружного диаметра трубы с добавлением 0,5 м при укладке отдельными трубами.

При наличии в период производства работ подземных вод мокрыми следует считать грунты, расположенные выше или ниже уровня грунтовых вод на величину капиллярного поднятия:

  • 0,3—0,5 м — для песков, от пылеватых до крупных;
  • 1,0м — для суглинков и глин.

Разработку грунта в котлованах или траншеях при переменной глубине заложения фундаментов следует вести уступами (рис. 3).

Схема котлована с переменной глубиной заложения фундамента Схема обратной засыпки пазух фундамента

Рис. 3. Схема котлована с переменной глубиной заложения фундамента 

Рис. 5. Схема обратной засыпки пазух фундамента: 1 — фундамент; 2 — стена подвала; 3 — гидроизоляция; 4 — асбестоцементные плоские листы; 5 — бетонный пол подвала; 6 - зона уплотнения грунта вручную; 7 — граница засыпки дренажа песком; 8 — дренажная труба; 9 — засыпка дренажа щебнем; 10 — слои грунта, уплотняемые легкими механическими трамбовками; 11 — отмостка; 12 — вентиляционный короб; 13 — перекрытие подвального этажа; 14 — утепленная кирпичная стена. Примечание. Толщина отсыпаемого слоя грунта принимается до 0,25 м.  

Отношение высоты уступа к его длине должно быть не менее: при связных грунтах — 1:2; при несвязных грунтах — 1:3. Это соотношение — упрощенный вариант, позволяющий без расчета границы сжимаемой зоны и несущей способности грунта сохранить устойчивость основания.

Защита котлована от грунтовых вод

 

Многие застройщики начинают строительство дома без проведения инженерно-геологического исследования участка. При наличии высокого уровня грунтовых вод в разработанный котлован может просочиться вода и воспрепятствовать сооружению фундамента. При возведении монолитного фундамента на слабопроницаемых грунтах уложенная в конструкцию бетонная смесь будет подмываться и вымываться грунтовыми водами, что приведёт к разрушению сооружения. В таких случаях приходится срочно принимать меры по защите основания от замачивания. Даже круглосуточная откачка воды не остановит приток грунтовых вод.

Защитить основание можно искусственным понижением уровня грунтовых вод с помощью специального водопонизительного оборудования: электроосушением с использованием установок типа ЛИУ; вакуумированием с применением установок типа УВВ-1, УВВ-2 и ЭВВУ (эжекторных вакуумных водопонизительных установок) или другого оборудования. Но эти дорогостоящие и сложные способы защиты котлована редко используют даже специализированные фундаментостроительные организации. Устраивать противофильтрационные диафрагмы способом «набивного шпунта» или «стена в грунте» тоже трудозатратно и еще дороже. Стоимость водопонижения может приблизиться к стоимости строительства фундамента, что значительно дороже стоимости гидрогеологических изысканий строительной площади.

Вариант защиты котлована от грунтовых вод
Рис. 4. Вариант защиты котлована от грунтовых вод: 1 — фундамент; 2 — песчаная подушка; 3 — канава для сбора воды; 4 — гравийная пригрузка; 5 — шпунтовая стенка; 6 - верхний слой водоупора; 7 — уровень земли 

В слабопроницаемых грунтах наиболее предпочтительным является способ открытого водоотлива в тех случаях, когда отсутствует опасность суффозии (разрушение структуры грунта). Котлован можно оградить шпунтовыми стенками (деревянными или металлическими) (рис. 4). Однако такой способ требует наиболее пологих откосов и увеличивает объем земляных работ.

 

Засыпка пазух траншей и котлованов

 

Обратная засыпка пазух грунтом производится после проверки устройства фундаментов, прокладки трубопроводов, их испытания и сдачи по акту. Засыпка и послойное уплотнение грунта должны выполняться с обеспечением сохранности гидроизоляции фундаментов и стен подвала. Засыпку пазух доводят до отметок, гарантирующих надежный отвод поверхностных вод.

Обратную засыпку траншей, на которые не передаются дополнительные нагрузки, можно выполнять без уплотнения грунта, но с отсыпкой по трассе траншеи валика, размеры которого должны учитывать последующую осадку грунта. Узкие пазухи лучше засыпать малосжимаемыми грунтами (щебнем, песчано-гравийной смесью). Запас на осадку грунта без уплотнения принимается в процентах от высоты засыпки до 4 м для грунта:

  • мелкий песок — 2;
  • супесь и легкий суглинок — 3;
  • глина тяжелая, суглинок, щебенистый грунт — 8.

При обратной засыпке пазух фундамента и стен подвала необходимо соблюдать нижеприведенные рекомендации с тем, чтобы давление грунта засыпки не повлияло на их устойчивость.

Засыпку пазух производят послойно. При этом толщина отсыпаемого слоя должна быть не более 25 см и число проходов не менее 4. Грунт уплотняют вручную, начиная с зон возле конструкций фундамента, стен подвала, мест ввода коммуникаций (рис. 5), а затем двигаются по направлению к краю откоса, применяя, если есть возможность, электротрамбовки типа ИЭ-4505, ИЭ-4502А. Верхний слой грунта уплотняют до отметки устройства отмостки. Чтобы уберечь гидроизоляцию стен подвала, ее закрывают плоскими асбестоцементными листами.

Глубина заложения фундаментов

Глубина заложения фундамента относительно пола подвала
Глубина заложения фундамента относительно пола подвала: 1 — песчаная подготовка под полы h1; 2 — бетонный пол подвала h2; 3 — уровень пола подвала; 4 — глубина заложения фундамента относительно пола подвала Нп; 5 — грунт 

Глубина заложения фундаментов зависит от ряда условий:

  • вида сооружения (дом, баня, гараж, хозяйственные постройки) и его конструктивных особенностей (наличия цокольного, подвального этажа и т.д.);
  • величины и характера нагрузок, действующих на фундамент;
  • геологических и гидрогеологических условий площадки;
  • возможности пучения грунта при промерзании и осадки при оттаивании.

Минимальная глубина заложения фундаментов под наружные конструкции сооружений, возводимых на всех грунтах, кроме скальных, должна быть не менее 0,5 м от поверхности планировки участка. В зданиях с подвалами приведенная глубина заложения подошвы фундаментов относительно пола должна быть не менее 0,5 м; при плотных или утрамбованных грунтах допускается не заглублять фундамент в грунт, т.е. принимать глубину заложения равной толщине подготовки под полы и пола подвала.

Глубина заложения фундамента относительно пола подвала Нп рассчитывается по формуле:

Нп = (h, + h2)(Vn + V6)/Vrp

Эту величину можно рассчитать так: Нп = (10 + 12)(1,6 + 2,2)/1,65 = 51 см,

где h1 — подготовка под полы толщиной 10 см из песка объемной массой Vn = 1,6 т/м3; h2 - бетонный пол подвала толщиной 12 см, объемная масса бетона V6 = 2,2 т/м3.

Объёмная масса грунта (супесь) 

Vrp = 1,65 т/м3  

Глубина заложения фундамента находится в непосредственной зависимости от глубины промерзания грунтов, а также от уровня грунтовых вод.

 

Глубина заложения фундамента с учетом условий возможности пучения грунтов при промерзании

Вид грунтов Расстояние от поверхности планировки до уровня грунтовых вод в период промерзания грунтов Глубина заложения фундамента от поверхности планировки
1. Скальные и крупнообломочные грунты, а также пески гравелистые, крупные и средней крупности Любое Не зависит от расчетной глубины промерзания
2. Пески мелкие и пылеватые, а также супеси твердой консистенции Превышает расчетную глубину промерзания на 2 м и более То же
3. Пески мелкие и пылеватые, супеси независимо от их консистенции Менее расчетной глубины промерзания или превышает ее менее чем на 2 м Не менее расчетной глубины промерзания
4. Супеси пластичной и текучей консистенции Любое То же
5. Суглинки и глины с твердой консистенцией Превышает расчетную глубину промерзания на 2 м и более Не зависит от расчетной глубины промерзания
6. Суглинки и глины мягкопластичной консистенции То же Может назначаться менее расчетной глубины промерзания при условии защиты грунтов основания от увлажнения поверхностными водами, а также от промерзания в период строительства и эксплуатации
7. Суглинки и глины текучепластичной и текучей консистенции Любое Не менее расчетной глубины промерзания
8. Суглинки и глины независимо от их консистенции Менее расчетной глубины промерзания или превышает ее менее чем на 2 м То же

Примечания:

Глубина заложения фундаментов внутренних стен отапливаемых зданий назначается без учета промерзания грунтов при условии защиты грунтов от увлажнения и промерзания с начала строительства до ввода сооружения в эксплуатацию.

Глубина заложения фундаментов стен зданий с неотапливаемыми подвалами при грунтах, указанных в п. 3, 4, 6—8 данной таблицы, назначается, считая от пола здания, равной половине расчетной глубины промерзания.

 

Коэффициент влияния теплового режима mt на промерзание грунтов

Тепловой режим здания и конструкции пола Значения mt
Регулярно отапливаемые здания с расчетной температурой воздуха в помещении не ниже 10°С и полами:  
на грунте 0,7
на лагах по грунту 0,8
на балках 0,9
Прочие здания (в том числе и с неотапливаемым техническим подпольем) 1

Примечание. Глубина промерзания грунтов при теплозащите определяется специальным расчетом.

Расчетная глубина промерзания определяется по формуле: 

Н = mtHн  

где mt — коэффициент влияния теплового режима здания на промерзание грунта у наружных стен; — нормативная глубина промерзания.

При наличии супесей и мелких или пылеватых песков нормативная глубина промерзания должна быть увеличена на 20%.

Уровень подземных грунтовых вод оказывает существенное влияние на поведение многих грунтов. Более хорошими условиями для будущего фундамента будут такие, при которых глубина промерзания меньше глубины грунтовых вод. И, наоборот, тяжелыми условиями считаются условия, когда глубина промерзания больше глубины грунтовых вод.

В последнем случае по мере усиления морозов будет увеличиваться и глубина промерзания грунта. Когда глубина промерзания достигнет уровня подземных грунтовых вод, начнется их превращение в лед, а вместе с этим и вспучивание, «вздутие» грунта. Это неприятное явление усугубляется еще и тем, что вспучивание практически никогда не бывает равномерным и в разных местах фундамента подъем грунта будет неодинаковым. Следствие этого - перекос фундамента, перераспределение нагрузок в нем и во всем строении, возможность появления трещин как в самом фундаменте, так и в стенах дома. Если бы процесс шел равномерно, то проблеме вспучивания грунта не нужно было бы уделять столько внимания - зимой дом равномерно бы приподнялся, а весной равномерно бы опустился. К сожалению, это недостижимо и по ряду других причин.

Если уровень грунтовых вод высок и их захватывает глубина промерзания, можно выбрать один из способов выхода из такой ситуации:

  • учесть этот фактор при выборе надежного варианта фундамента, не считаясь с увеличением сметы на строительство;
  • провести работы, если это возможно, для гарантированного понижения уровня грунтовых вод (осушение, прокладка дренажных канав и т.д.).

Устройство фундаментов на водоносных песчаных или супесчаных грунтах со свободным горизонтом воды выше отметки подошвы должно сопровождаться понижением уровня грунтовых вод до отметки на 0,5 м ниже дна котлована. 

Нагрузка на фундаменты

При устройстве фундаментов важное значение имеют не только правильный выбор глубины заложения, точность разбивочных работ, соблюдение технологических процессов устройства фундамента, но и верный выбор самой конструкции фундамента с учетом всех нагрузок от здания и способности грунта оснований выдерживать эти нагрузки без существенных деформаций. Расчеты и вариантное конструирование фундаментов с учетом применения различных материалов и способов их возведения позволят найти оптимальное техническое решение, при котором фундаменты будут более надежными и экономичными.

Грамотный расчет оснований и фундаментов может выполнить только специалист, так как для этого надо уметь использовать данные инженерно-геологических изысканий, нормативы, коэффициенты, величины и другие показатели, а также методики расчета, принятые в СНиПах. При расчете основания здания первостепенное значение имеют вид и сопротивляемость грунта. Для предварительного назначения размеров фундамента используются данные нормативного давления на основания. Эти данные могут быть использованы при ширине фундаментов от 0,6 до 1,5 м и глубине заложения от 1 до 2,5 м, считая от отметки природного рельефа или от отметки планировки до отметки основания.

Нормативное давление на основание

Вид грунта кПа кгс/см2
Крупнообломочные грунты, щебень, гравий 500-600 5,0-6,0
Пески гравелистые и крупные 350-450 3,5-4,5
Пески средней крупности 250-350 2,5-3,5
Пески мелкие и пылеватые плотные 200-300 2,0-3,0
Пески средней плотности 100-200 1,0-2,0
Супеси твердые и пластичные 200-300 2,0-3,0
Суглинки твердые и пластичные 100-300 1,0-3,0
Глины твердые 300-600 3,0-6,0
Глины пластичные 100-300 1,0-3,0

При глубине заложения фундамента более 2,5 м нормативное давление увеличивается, а при менее 1 м — уменьшается. Общее давление на грунт при определенной опорной площади фундамента не должно превышать расчетного сопротивления грунта. Общая нагрузка, действующая на 1—2 м2 подошвы ленточного фундамента, будет равна сумме нагрузок от снега, крыши, всех перекрытий и перегородок, оборудования в доме, наружной стены дома и самого фундамента. Ориентировочную общую нагрузку можно вычислить с помощью таблиц.

Нагрузка от 1 м2 стены

Материал стен кПа кгс/м2
Деревянные каркасно-панельные толщиной 150 мм с минераловатным утеплителем 0,3-0,5 30-50
Брусчатые и бревенчатые толщиной 140-180 мм 0,7-1,0 70-100
Из опилкобетона толщиной 350 мм 3,0-4,0 300-400
Из керамзитобетона толщиной 350 мм 4,0-5,0 400-500
Из шлакобетона толщиной 400 мм 5,0-6,0 500-600
Из эффективного кирпича толщиной, мм:    
380 5,0-6,0 500-600
510 6,5-7,5 650-750
640 8,0-9,0 800-900
Из полнотелого кирпича сплошной кладки толщиной, мм:    
250 4,5-5,0 450-500
380 7,0-7,5 700-750
510 9,0-10,0 900-1000

 

Нагрузка от 1 м2 перекрытий пролетом до 4,5 м

Тип перекрытия кПа кгс/м2
Чердачное по деревянным балкам плотностью, кг/м3, не более:    
200 0,7-1 70-100
300 1-1,5 100-150
500 1,5-2 150-200
Цокольное по деревянным балкам плотностью, кг/м3, не более:    
200 1-1,5 100-150
300 1,5-2,0 150-200
500 2,0-3,0 200-300
Цокольное железобетонное 3,0-5,0 300-500

 

Нагрузка от 1 м2 горизонтальной проекции крыш

Тип кровли кПа кгс/м2
Покрытие рубероидом 0,3-0,5 30-50
Керамическая черепица при уклоне 45° 0,6-0,8 60-80
Кровельная сталь при уклоне 27° 0,2-0,3 20-30

 

Виды оснований

 

К основаниям из просадочных грунтов относятся глинистые грунты, которые, находясь в напряженном состоянии под действием нагрузки от сооружения или собственного веса, при замачивании дают дополнительную деформацию — просадку. Критерием для отнесения глинистых грунтов к просадочным является степень влажности (доля заполнения пор водой) < 0,6.

В зависимости от возможности просадочных явлений под действием собственного веса грунтовые условия на участке строительства подразделяются на два типа:

  • грунтовые условия, при которых просадка от собственного веса не превышает 5 см;
  • грунтовые условия, при которых возможна просадка от собственного веса более 5 см.

Тип грунтовых условий устанавливается в процессе инженерно-геологических изысканий. Устойчивость дома и других сооружений можно обеспечить следующими мероприятиями:

  • устранением просадочных свойств грунтов в пределах всей или части просадочной толщи;
  • заглублением фундамента;
  • устройством свайных фундаментов;
  • применением водозащитных и конструктивных мероприятий.

Выбор мероприятия производится на основе технико-экономических расчетов.

К основаниям из набухающих грунтов относят глинистые грунты, которые при замачивании в напряженном состоянии увеличиваются в объеме. Для набухающих грунтов характерны, кроме того, большая пластичность, низкий предел усадки и природная влажность. Выбор глубины заложения и назначение размеров фундаментов, возводимых на набухающих грунтах, можно производить без учета их набухающих свойств, т.е. как для обычных грунтов в природном состоянии.

Для противодействия набуханию грунтов можно увеличить давление на эти грунты против нормативов. Устойчивость дома и других сооружений при возможных деформациях основания от набухания, превышающих допустимые, обеспечивается за счет соответствующей подготовки основания:

  • устранения набухающих свойств грунтов в пределах всей или части толщи путем предварительного замачивания;
  • применения компенсирующих грунтовых подушек;
  • замены (полной или частичной) слоя набухающего грунта другим грунтом.
Схема устройства компенсирующей подушки

Рис. 1. Схема устройства компенсирующей подушки: 1 — ленточный фундамент; 2 — песчаная подушка; 3 — отметка планировки; 4 — отметка кровли (верха) набухающего грунта; Н — глубина заложения фундамента; а — ширина фундамента; h — высота песчаной подушки; с — отрезок компенсационной подушки

Компенсирующие подушки  применяются в целях уменьшения величины неравномерности подъема ленточных фундаментов при замачивании основания из набухающих грунтов. Располагают компенсирующие подушки на кровле или в пределах слоя набухающих грунтов таким образом, чтобы глубина заложения фундамента Н была минимальной, но не менее 0,5 м, минимальное давление на грунт — не менее 1 кгс/см2. Размеры подушек назначаются в зависимости от ширины ленточного фундамента.

 

Размеры компенсирующих подушек

Ширина фундамента, а, м h c α, град.
0,5 < а < 0,7 1,2а 0,7а 75-90
0,7 < а < 1 1,15а 0,5а 75-90
1 < а < 1,2 1,1а 0,4а 75-90

Примечание. В том случае, если между стенками траншеи и подушкой будет находиться насыпной грунт, ширина подушки назначается из условия обеспечения устойчивости под действием горизонтальных напряжений.

Для устройства подушки рекомендуется применять несвязные грунты. Плотность уплотненного грунта подушки должна быть не менее: для мелких песков 1,60 т/м3, для средних и крупных 1,55 т/м3. Нижний слой подушки толщиной от 15 до 30 см не уплотняется.

Действие сил пучения грунта на фундаменты

 

Давление по подошве фундамента назначается в зависимости от вида грунта подушки и его состояния. Нагрузка на основание, особенно из просадочных и набухающих грунтов, должна быть сбалансирована, иначе при фактической нагрузке, превышающей нормативную вследствие замачивания грунта, произойдет дополнительная просадка фундамента, а при недогрузке силам пучения легко будет вытолкнуть вверх фундамент. Рассмотрим, как действуют эти силы на фундамент.

Самыми опасными силами, действующими на фундаменты малоэтажных домов, являются силы морозного пучения. В тяжелых пучинистых грунтах, где присутствуют водонасыщенные глины, суглинки, супеси, вертикальные перемещения поверхностного слоя грунта при его промерзании на 1—1,5 м составляют 10—15 см (рис. 2).

Схема деформации грунта при пучении Схема действующих сил пучения на фундаменты
Рис. 2. Схема деформации грунта при пучении: 1 — уровень промерзания грунта; 2 — уровень земли до пучения; 3 — уровень земли при пучении  Рис. 3. Схема действующих сил пучения на фундаменты: а — силы пучения, действующие на ленточный фундамент без подвала; б — то же, с подвалом; в — силы бокового пучения, действующие на столбчатый фундамент; 1 — фундамент; 2 — уровень промерзания грунта; 3 — уровень земли до пучения; 4 — уровень земли при пучении; А — нагрузка сооружения на фундамент; Б — сила сопротивления грунта основания; В — силы морозного пучения грунта основания  

Результаты действия сил морозного пучения — подъём фундамента, а затем при неравномерном оттаивании грунта — его опускание — приводят к деформации фундамента, перекосу стен дома и появлению различных дефектов: трещины в стенах, смещение балок, крыльца, отслоение обоев, заклинивание дверей и т.д. Избежать отрицательного воздействия сил морозного пучения не всегда удается только за счет увеличения глубины заложения фундамента ниже уровня промерзания. Силы пучения действуют не только снизу, но и сбоку. Эти касательные силы способны накренить фундамент, что приведет к изменению направления действующих вертикально сил, внецентренному давлению от нагрузок дома и дополнительным неприятным последствиям. Силы, действующие на фундаменты, показаны на рис. 3.

Опорная поверхность фундамента (см. рис. 3, а) — подошва — расположена выше уровня промерзания грунта и на нее действуют силы пучения В. Такое устройство фундамента можно считать неправильным. Фундаменты, расположенные ниже уровня промерзания грунта (см. рис. 3, б, в), не испытывают давления мерзлого грунта снизу, но боковое давление остается значительным и может привести к смещению фундамента. Для нейтрализации этих сил, кроме мероприятий, описанных при рассмотрении свойств просадочных и набухающих грунтов, рекомендуется:

  • возводить монолитные железобетонные фундаменты на песчаной подушке;
  • основание фундамента выполнить уширенным, в виде опорной площади;
  • вертикальные стенки, выполненные из штучных изделий, делать сужающимися к верхней части фундамента;
  • утеплять поверхностный слой грунта (под отмосткой) вокруг фундамента.

Расчет несущей способности оснований фундаментов

В первые годы эксплуатации любого здания грунты сжимаются под действием прикладываемых нагрузок. В результате этого фундамент опускается на определенную величину, которая называется осадкой. Большие, а главное, неравномерные осадки являются основной причиной трещин, деформаций и других разрушений здания. Несущая способность основания определяется величиной нагрузки, при которой не превышается установленная нормативами осадка.

Для определения типа оснований и ожидаемой просадки грунта в районе строительства производят инженерно-геологические изыскания, в результате которых определяют виды грунтов, их свойства, положение уровня грунтовых вод, характер расположения пластов грунта и т.п. Площадь основания фундамента выбирается из такого расчета, чтобы на каждый ее квадратный сантиметр приходилась нагрузка, не превышающая критическое значение. Расчетное сопротивление грунтов выбирают, исходя из таблицы 1.

Таблица 1. Значения расчетных сопротивлений основных видов грунтов

Грунт Расчетное сопротивление грунтов (кг/см2)
Плотных Средней плотности
Пески гравелистые и крупные (независимо от их влажности) 4,5 3,5
Пески средней крупности (независимо от их влажности) 3,5 2,5

Пески мелкие:

   
маловлажные 3,0 2,5
очень влажные и насыщенные водой 2,0 2,0

Пески влажные:

   
маловлажные 2,5 2,0
очень влажные 2,0 1,5
насыщенные водой 1,5 1,0

Глины твердые и пластичные:

   
глины твердые 6,0 3,0
то же, пластичные 3,0 1,0
Крупнообломочные, щебень, галька, гравий 6,0 5,0

При возведении фундаментов на насыпных грунтах следует учитывать максимально допустимую нагрузку на основание. Нормативное давление на основание принимается в зависимости от плотности грунта, его давности, способа отсыпки и от допустимых осадок для дома, но не более величин, приведенных в таблице 2.

Таблица 2. Наибольшее допускаемое давление на основание из насыпных грунтов

Характер насыпей и вид грунтов Предельная величина давления на грунт в кг/см2

Планово возведенные насыпи из грунтов:

 
песчаных 2,5
глинистых 2,0

Отвалы (без уплотнения площади основания):

 
из песчаных грунтов, шлаков и т.д. 1,8
из глинистых грунтов, отходов строительного производства, золы и т.д. 1,2
Свалка грунтов, отходов производства и бытовых отбросов без уплотнения площади оснований 1,0
То же, с уплотнением площади оснований 1,5

Уровень грунтовых вод

Уровень грунтовых вод (УГВ) оказывает одно из решающих влияний на выбор конструкции фундамента и глубины его заложения. При низком уровне грунтовых вод (1,5 — 2 м ниже уровня подошвы фундамента) глубина заложения фундамента выбирается в зависимости от состояния грунта. Главное, это не закладывать фундамент на насыпном грунте. Более высокий уровень грунтовых вод снижает несущую способность грунта. Поэтому в такой ситуации глубину заложения фундамента соизмеряют с глубиной промерзания грунта, которая в разных регионах нашей страны может колебаться в значительных пределах (от 70 см до 220 см и более). Существенную роль играет уровень грунтовых вод при сооружении зданий с подвалом, где гидроизоляции уделяется главное внимание.

Для того чтобы понизить уровень грунтовых вод на участке или какой-либо его части, чаще всего обходятся устройством кюветов с гарантированным сбросом воды в сторону уклона рельефа. Такие кюветы обычно эффективны при временных повышениях уровня грунтовых вод в моменты ливней или при таянии снегов. Для участков, на которых уровень грунтовых вод повышен постоянно, следует сооружать специальные дренажные системы.

Гидроизоляция подвала при напоре грунтовых вод

Гидроизоляция подвала при напоре грунтовых вод:
А — при напоре грунтовых вод не более 0,2 м; Б — при напоре более 0,2 м;
1 — горизонтальная гидроизоляция; 2 — бетонная подушка; 3 — стена подвала; 4 — чистый пол; 5 — монолитный железобетон; 6 — гидроизоляционный ковер; 7 — вертикальная гидроизоляция; 8 — защитная стенка; 9 — мятая глина.

Ленточные прерывистые сборно-монолитные фундаменты

При устройстве ленточных сборно-монолитных фундаментов применяются те же сборные элементы, что и при возведении сборных прерывистых фундаментов (рис. 1). Тип бетонного блока выбирают в зависимости от толщины стены. Сборно-монолитные прерывистые фундаменты выполняют в следующей технологической последовательности. Монтаж начинают с установки маячных блок-подушек ФЛ в углах здания. После выверки их проектного положения раскладывают рядовые блоки-подушки с интервалом, которые определяют по расчету или принимают по таблице. Угловые блоки-подушки должны быть шире рядовых, так как на них будут опираться блоки двух стен. На рядовые блоки-подушки устанавливают стеновые блоки ФБС, ширина которых может быть 300, 400, 500 и 600 мм в зависимости от промежутка между блоками-подушками. Затем между рядами стеновых блоков закрепляют щиты опалубки и заполняют послойно бетоном класса не менее В12,5 (М150), уплотняя каждый слой вибратором. Для ввода в дом коммуникаций в монолитных участках предусматривают отверстия. Для этого перед бетонированием в опалубку устанавливают патрубки или изготовленный из досок короб нужного размера.

Применение фундаментов такой конструкции дает возможность сократить количество блоков-подушек на 20 —30%, а стеновых блоков на 50%, уменьшить количество швов и местных заделок кирпичом или бетоном, но возникает дополнительная работа по устройству опалубки, доставке инертных материалов (песка и щебня), цемента, приготовлению и укладке бетонной смеси, уходу за бетоном и др.

Ленточные прерывистые сборно-монолитные фундаменты не нашли практического применения ни у частных застройщиков индивидуальных домов, ни у строителей. Предпочтение отдано другому варианту — сборно-монолитному фундаменту, где блоки стен подвала опираются на монолитную плиту.

Ленточный прерывистый сборно-монолитный фундамент Ленточный сборный фундамент на монолитной плите
Рис. 1. Ленточный прерывистый сборно-монолитный фундамент: 1 — блоки-подушки ФЛ; 2 — фундаментные блоки стен ФБС; 3 — монолитный бетон класса В12,5  Рис. 2. Ленточный сборный фундамент на монолитной плите: 1 — грунт основания; 2 — выравнивающий слой песка толщиной 5 —10 см; 3 — бетонное основание; 4 — противонапорная оклеечная гидроизоляция из двух слоев рубероида; 5 — гладкий асбестоцементный лист; 6 — бетонный пол; 7 — бетонные блоки стен подвала; 8 — цоколь; 9 — плита перекрытия; 10 — утеплитель; 11 — грунт обратной засыпки; 12 — бетонная отмостка 
Сборные элементы ленточных фундаментов

Рис. 3. Сборные элементы ленточных фундаментов: а — бетонные блоки для стен подвалов ФБС; б — блоки ленточного фундамента 

Ленточный сборный фундамент на монолитной плите

 

При устройстве ленточного сборно-монолитного фундамента сборные элементы марки ФЛ можно заменить устройством монолитной железобетонной плиты — пола подвала. Пол подвала в этом случае выполняет функцию фундаментной плиты, на которую опираются стены подвала. Грамотно выполненная горизонтальная гидроизоляция пола подвала с переходом на вертикальную гидроизоляцию стен обеспечивает водонепроницаемость всей конструкции при наличии подпора грунтовых вод (рис. 2).

Работа по устройству такой конструкции фундамента выполняется в следующей технологической последовательности. Основание при необходимости выравнивают слоем песка или щебня толщиной 5 —10 см. Затем по контуру бетонной подготовки устанавливают из досок опалубку. Перед укладкой бетона толщиной 10 —15 см грунт основания и опалубку увлажняют водой и заполняют опалубку до установленной отметки бетонной смесью М150 (класс бетона В10). После уплотнения и выравнивания бетонной поверхности в зависимости от погодных условий осуществляют соответствующий уход за бетоном, обеспечивающий набор прочности.

В зависимости от нагрузок на фундамент бетонное основание в местах опирания блоков стен армируют. Ширина и толщина армированной монолитной ленты определяется расчетом. В одних случаях достаточно уложить арматурную сетку с ячейками 10x10 см из арматуры класса AIII диаметром 10 мм, шириной 1 м. После набора бетоном 50%-ной прочности опалубку снимают, а поверхность огрунтовывают, просушивают и выполняют оклеечную гидроизоляцию из двух слоев рулонного материала (рубероида, стеклорубероида, изола, гидроизола и др.). Оклеечную гидроизоляцию выпускают на 30-50 см за пределы бетонного основания с тем, чтобы после монтажа стеновых блоков ФБС гидроизоляционный ковер можно было наклеить с наружной стороны и состыковать с наружной вертикальной гидроизоляцией стен подвала. После этого гидроизоляцию закрывают слоем бетона или раствора, поверхность которого является полом подвала.

Снаружи оклеечная гидроизоляция не должна подвергаться действующим сдвигающим и растягивающим нагрузкам. Для предохранения от механических повреждений она должна быть защищена и зажата защитной конструкцией из бетона, кирпича и т.д. Проще всего защитить гидроизоляцию гладкими асбестоцементными листами, которые прислоняют к гидроизоляции и засыпают пазух грунтом с послойным трамбованием (см. рис. 2).

При уровне грунтовых вод ниже подошвы фундамента не менее чем на 0,5 м оклеечную гидроизоляцию можно заменить на послойную окрасочную гидроизоляцию общей толщиной 3 —5 мм. Более подробно изоляционные работы рассмотрены в разделе «Гидроизоляция подземных сооружений».

Бетонные блоки для стен подвалов

Тип, марка Масса, кг Размеры, мм
Длина l Ширина b Высота h
ФБС 24-3-6 1040 2380 300 580
ФБС 24-4-6 1300 2380 400 580
ФБС 24-5-6 1600 2380 500 580
ФБС 24-6-6 2000 2380 600 580
ФБС 12-3-6 500 1180 300 580
ФБС 12-4-6 640 1180 400 580
ФБС 12-5-6 800 1180 500 580
ФБС 12-6-6 1000 1180 600 580
ФБС 9-3-6 370 880 300 580
ФБС 9-4-6 470 880 400 580
ФБС 9-5-6 600 880 500 580
ФБС 9-6-6 730 880 600 580
ФБС 12-4-3 370 1180 400 280
ФБС 12-5-3 470 1180 500 280
ФБС 12-6-3 600 1180 600 280

Блоки ленточного фундамента

Тип, марка Масса Размеры, мм
Длина l Ширина b Высота h
ФЛ 32-12-2 3,23 1180 3200 300
ФЛ 32-12-3 3,23 1180 3200 300
ФЛ 28-12-3 3,40 1180 2800 300
ФЛ 24-12-3 2,30 1180 2400 300
ФЛ 20-12-2 1,95 1180 2000 300
ФЛ 20-12-3 1,95 1180 2000 300
ФЛ 16-24-2 2,47 2380 1600 300
ФЛ 16-24-3 2,47 2380 1600 300
ФЛ 14-24-2 1,90 2380 1400 300
ФЛ 14-24-3 1,90 2380 1400 300
ФЛ 14-12-3 0,91 1180 1400 300
ФЛ 12-24-2 1,63 2380 1200 300
ФЛ 12-24-3 1,63 2380 1200 300
ФЛ 12-12-2 0,78 1180 1200 300
ФЛ 12-12-3 0,78 1180 1200 300
ФЛ 10-24-2 1,38 2380 1000 300
ФЛ 10-24-3 1,38 2380 1000 300
ФЛ 10-12-2 0,65 1180 1000 300
ФЛ 10-12-3 0,65 1180 1000 300
ФЛ 8-24-3 1,16 2380 800 300
ФЛ 8-12-3 0,55 1180 800 300
ФЛ 6-24-3 0,80 2380 600 300
ФЛ 6-12-3 0,37 1180 600 300

 

Организация труда рабочих по монтажу сборных элементов

 

Для обеспечения выполнения работ по возведению фундамента в кратчайшие сроки и с надлежащим качеством бригадиру до начала работ необходимо:

  • изучить рабочие чертежи;
  • распределить задание между рабочими, разъясняя им технологию производства работ;
  • подготовить необходимое количество инструментов и приспособлений, требующихся для производства работ;
  • определить потребность в материалах и изделиях;
  • определить фронт работ и перестановку рабочих в случае вынужденного простоя.

Правильная расстановка рабочих по отдельным процессам и операциям, подготовленность фронта работ, соблюдение технологического режима производства работ и выполнение других необходимых мер будут способствовать успешной работе и достижению поставленных задач. Для монтажа сборных ленточных фундаментов достаточно будет включить в состав звена четыре человека. Звено рабочих, ведущих монтаж фундамента, должно быть обеспечено следующими инструментами:

  • кельмы — 2 шт.;
  • зубила ручные — 2 шт.;
  • монтажные ломы — 2 шт.;
  • молотки-кулачки — 2 шт.;
  • топор плотницкий — 1 шт.;
  • шнур для причалки — 40 м;
  • отвес 400 г — 1 шт.;
  • уровень — 1 шт.;
  • рулетка стальная — 1 шт.;
  • лопата совковая — 2 шт.;
  • лопата штыковая — 1 шт.

Кроме того, требуются стропы для подъема блоков, ящики емкостью 0,25 —0,5 м3 для раствора, клинья для выверки блоков, колья для разбивочных работ, инвентарные переносные подмости, приставная лестница для спуска в котлован (траншею).

 

Бутовая и бутобетонная кладка ленточного фундамента

 

Бутовую и бутобетонную кладку подземных конструкций допускается производить только для малоэтажных зданий и сооружений высотой не более 10 м. Устройство фундаментов на просадочных грунтах не допускается. Для бутовой кладки применяется камень в кусках неправильной формы из местных пород, преимущественно известняков, доломитов и песчаников. Можно применять также нерасколотый булыжный камень. Марочная прочность камней должна быть не менее 100. Кладку ведут в траншеях или в опалубке. Ширина конструкции из бутового камня должна быть не менее 60 и не более 120 см. Высота кладки до 180 см.

Бутовая кладка. Бутовую кладку ведут двумя основными способами: «под лопату» и «под залив». «Под лопату» бутовую кладку ведут с подбором камня и перевязкой, выравнивая ряды по натянутому шнуру. Первый слой камней укладывают насухо на грунт в распор с опалубкой или стенками траншеи, подбирая для этого более крупные и самые постелистые камни. Камни осаживают кувалдой или трамбовкой. Пустоты между ними заполняют цементным раствором М50, вгоняя в них щебенку ударами молотка. Можно сначала зазоры расщебенить, но тогда следует залить сверху раствором повышенной подвижности. После этого на первый ряд камней укладывают слой раствора и разравнивают его лопатой. Затем, соблюдая условия перевязки, укладывают следующий ряд камней.

При бутовой кладке «под лопату» применяют послойное вибрирование камней и раствора. Это повышает прочность каменных конструкций и создает условия для быстрой их нагрузки. Верх каждого ряда камней в этом случае покрывают раствором толщиной 40 — 60 мм. Горизонтальность кладки проверяют через каждые 2 —3 ряда с использованием правила и уровня. Кладку каждого следующего ряда начинают с установки крупных камней (маяков) в углах и пересечениях стен.

Бутовую кладку «под залив» применяют только для фундаментов домов высотой не более двух этажей. Подвижность раствора для такой кладки должна соответствовать погружению стандартного конуса на 130 —150 мм. При кладке «под залив» бутовый камень укладывают горизонтальными рядами высотой 15 —20 см враспор со стенками траншей или опалубки, без выкладки верстовых камней, но с расщебенкой пустот. Перерывы в кладке «под залив» допускаются только после заполнения раствором пустот между камнями верхнего ряда и выполнения мероприятий по защите кладки от высыхания.

При строительстве фундамента на пучинистых грунтах, чтобы ослабить действия касательных сил морозного пучения, стены фундамента делают сужающимися кверху (рис. 4). Для придания стенам фундамента нужного уклона устанавливают щитовую опалубку. После снятия опалубки зазор между откосом траншеи и стеной фундамента заполняют песком или грунтом.

Схема бутовой кладки фундамента без подвала с наклонными стенами Вариант устройства бутобетонного фундамента с подвалом
Рис. 4. Схема бутовой кладки фундамента без подвала с наклонными стенами: а — ширина подошвы фундамента — от 60 до 100 см; б — ширина обреза — выступающей части фундамента — от 40 до 80 см; h — глубина фундамента до 100 см   Рис. 5. Вариант устройства бутобетонного фундамента с подвалом: 1 — рулонная гидроизоляция; 2 — прижимная стенка из гладкого асбестоцементного листа; 3 — бетонный пол; 4 — облегченная железобетонная плита перекрытия; 5 — кирпичный цоколь; 6 — утеплитель; 7 — грунт обратной засыпки; 8 — отмостка  

Вместо съемной деревянной опалубки можно использовать гладкие асбестоцементные листы, которые после окончания работ остаются в траншее. Их применение позволяет в процессе кладки придать фундаменту нужную форму с гладкой поверхностью и не допустить растекания раствора. Кроме того, при необходимости гидроизоляции фундамента это позволит быстро и качественно выполнить такую работу. Кладку фундамента выполняют на 10 —15 см выше уровня земли для дальнейшего устройства цоколя и горизонтальной гидроизоляции.

Бутобетонная кладка состоит из бетонной массы, в которую горизонтальными рядами втапливаются камни, общий объем которых составляет около половины объема кладки. Размеры камня не должны превышать 1/3 ширины конструкции. Щебень для бетона не должен быть крупнее 30 мм. Кладку необходимо выполнять, расстилая бетонную смесь горизонтальными слоями толщиной до 25 см с последующим втапливанием в каждый слой бутовых камней с зазорами между ними не менее 4 —5 см. Камни следует осаживать в бетонную смесь до начала ее схватывания не менее чем на 1/2 их высоты с помощью вибратора или трамбовки. Возобновлять бутобетонную кладку после перерыва более 6 ч следует с укладки бетона, причем поверхность ранее уложенной кладки необходимо очистить от пыли и обязательно смочить водой. Спускать бутовый камень к месту укладки при отсутствии крана можно по деревянным желобам необходимой длины, сечением 40x40 см. К нижнему концу желобов прибивают упорные бруски для остановки спускаемого камня, а спуск раствора осуществляют по лоткам шириной 50 см, с бортами высотой 20 см, уширенным вверху.

В зависимости от гидрогеологических условий участка, конструкции и материала стен и других факторов при выборе бутобетонного фундамента допускается устройство цокольного (подвального) этажа. Один из вариантов показан на рис. 5. Материалы для устройства подземной части дома приведены в таблице.

Состав бетона и раствора можно подобрать по таблице. Раствор должен быть такой пластичности, чтобы в нем без утрамбовки утапливались камни. В жаркую погоду бутобетон следует предохранять от высыхания: поливать водой, накрывать рогожами.

Материалы для подземной части дома

Геологические условия Камни природные плотностью не менее, кг/м3 Кирпич глиняный обыкновенный плотностью 1800 кг/м3 Бетон монолитный и сборный марки Марки раствора
Известняк - 1800 Песчаник, ракушечник - 1500 Гранит, базальт - 1800 цементно-глиняного цементно-известкового цементно-песчаного
Грунты маловлажные. Уровень грунтовых вод ниже 3 м от поверхности земли + + + + 50 10 10 10
Грунты влажные. Уровень грунтовых вод от 1 до 3 м от поверхности земли + + + + 75 - 25 25
Грунты, насыщенные водой. Уровень грунтовых вод менее 1 м от поверхности земли - - + - 100 - - 50

Примерный состав бетонов и растворов

Бетон, раствор Состав по объему: цемент + песок + щебень
Цемент М400  
Бетон класса:  
В3,5 1+4+7
В5 1+3,5+6
В7,5 1+3+5
Цементный раствор:  
М10 -
М25 1+6
М50 1+4

Ленточные фундаменты

 

Типы ленточных фундаментов. Плюсы и минусы

К наиболее распространенным типам фундаментов можно отнести ленточные фундаменты. Они бывают из сборных бетонных и железобетонных элементов, сборно-монолитные и монолитные, а также из бутовой и бутобетонной кладки. Ленточные фундаменты обычно возводят при строительстве домов с тяжелыми стенами (бетонными, каменными, кирпичными и т.п.) и железобетонными перекрытиями, а также в случаях, когда под домом устраивают цокольный или подвальный этаж, где можно разместить котельную, сауну, душевую, туалет, бассейн, комнату отдыха, мастерскую, кладовую, подземный гараж или другие помещения. Даже в домах с фундаментами мелкого заложения, где не предусмотрено строительство подвала, возводят ленточные фундаменты. При этом застройщик выбирает из всех типов фундаментов в основном фундаменты из готовых сборных блоков.

Сборные фундаменты несущих стен жилых домов применяют только в России. Зарубежные проектировщики, строители и застройщики не могут позволить себе этого, так как такие фундаменты обходятся не только дороже монолитных, но и нарушают целостность и монолитность конструкций. Это все равно, что разрезать монолитный фундамент вдоль и поперек на отдельные блоки, а потом собрать их в одну конструкцию со множеством швов и стыков. Согласно расчетам стоимость сооружения монолитных фундаментов по прогрессивным технологиям обходится дешевле, чем приобретение и доставка автотранспортом сборных элементов, оплата работы автокрана при их монтаже, и все же предпочтение остается за сборным вариантом. Происходит это по ряду причин. Основные из них — низкий уровень технологии производства бетонных работ (перегрузка бетонной смеси сначала в бадьи, а затем ее подача к месту укладки и разгрузка), отсутствие легкой сборно-разборной опалубки, современных технических средств для уплотнения и разглаживания бетонной смеси, низкая квалификация рабочих кадров (арматурщиков, бетонщиков, мастеров) и целый ряд других недостатков. Все это, естественно, приводит к тому, что строить монолитные фундаменты по старинке невыгодно. Но все же при небольших объёмах бетонных работ, в отсутствие крана и удаленности бетонного завода (узла) целесообразно завезти цемент, песок, щебень и с помощью бетономешалки готовить бетон в непосредственной близости от места укладки.

Конечно, опустить в траншею или котлован готовые блоки намного быстрее и проще, их запас прочности таков, что можно вместо 2—3-этажного коттеджа построить дом в 5—9 этажей. Устройство сборных фундаментов, несмотря на кажущуюся простоту, все же довольно трудоёмкая работа, так как в местах, где не размещаются доборные элементы, приходится вырубать выступающие части установленных длинных блоков или вместо доборных элементов заполнять пространство монолитным бетоном или кирпичной кладкой, а вертикальные швы между блоками тщательно заполнять цементным раствором. Несмотря на эти недостатки и относительно высокую стоимость сборных элементов в условиях короткого строительного сезона, устройство сборных ленточных фундаментов позволяет сократить как трудозатраты, так и сроки возведения фундаментов.

Сборные фундаменты могут применяться при любых грунтах с соблюдением конструктивных мероприятий. При сильносжимаемых грунтах (модуль деформации Ео < 100 кгс/см2), а также при неравномерном напластовании грунтов, значительно отличающихся своей сжимаемостью, следует предусматривать армированный шов (сетка ячейкой 10x10 см из арматуры D 8AIII) поверх блоков-подушек и железобетонный пояс сечением 25x25 см (30x60 см) из арматуры D 10AIII, укладываемый по верхнему ряду стеновых фундаментных блоков (см. рис. 1).

Ленточный фундамент из сборных элементов с монолитным поясом План подвала жилого дома. Основные оси и размеры
Рис. 1. Ленточный фундамент из сборных элементов с монолитным поясом: 1 — песчаная подготовка толщиной до 10 см; 2 — элементы ленточного фундамента (ФЛ); 3 — армированный шов; 4 — блоки бетонные для стен подвалов (ФБС); 5 — железобетонный пояс  Рис. 2. План подвала жилого дома. Основные оси и размеры 

Ленточные сплошные фундаменты из сборных элементов

До начала работ по возведению фундамента и стен подвала необходимо выполнить работы, перечисленные в разделе «Производство работ подготовительного периода». До закладки фундамента следует произвести освидетельствование (проверку с составлением акта) оснований котлована (траншей). Перед монтажом сборных ленточных фундаментов переносят на основание и закрепляют на нем оси возводимого дома и наружные контуры фундаментных блоков, а на сборных элементах размечают осевые риски. Чтобы понять, что такое оси, посмотрите на рис. 2.

Монтаж фундаментных блоков в плане необходимо производить относительно разбивочных осей по двум взаимно перпендикулярным направлениям, совмещая осевые риски фундаментов с ориентирами, закрепленными на основании, или контролируя правильность установки геодезическими приборами.

Монтаж следует начинать с установки маячных блоков в углах здания и на пересечениях осей. К монтажу рядовых блоков приступают только после выверки положения маячных блоков в плане и по высоте. Положение в плане контролируют измерением длин сторон фундамента, а для определения прямоугольности — измерением расстояний по диагонали. Высотное положение определяют нивелиром, а при его отсутствии — водяным уровнем.

Минимальная глубина перевязки вертикальных швов фундаментных стеновых блоков Схема примыкания стен из блоков и кирпича
Рис. 3. Минимальная глубина перевязки вертикальных швов фундаментных стеновых блоков: а — при малосжимаемых грунтах; б — при сильносжимаемых грунтах  Рис. 4. Схема примыкания стен из блоков и кирпича: 1 — стеновой блок; 2 —кирпичная стена; 3 — горизонтальный шов; 4 — связь из арматурной сетки 

Фундаментные блоки следует монтировать на выровненный до проектной отметки слой песка толщиной до 10 см. Монтаж блоков фундаментов на покрытые водой или снегом основания не допускается. Фундаментные стеновые блоки кладут на раствор с перевязкой вертикальных швов, глубина которой должна быть не менее 0,4 высоты блока (рис. 3, а) при малосжимаемых грунтах и не менее высоты блока при сильносжимаемых, просадочных и набухающих грунтах (рис. 3, б). Например, при высоте блока 580 мм минимальная глубина при варианте рис. 3, a  0,4h = 232 мм, при варианте рис. 32, б h = h = 580 мм.

При невозможности такой перевязки следует укладывать в швы кладки (не менее чем на 2 шва по высоте фундамента) связи из арматурных сеток. В примыканиях к стенам из крупных блоков и стенам из кирпича связи укладывают в каждом шве, образуемом блоками (рис. 4). Проемы для вводов в дом инженерных коммуникаций осуществляют путем раздвижки блоков с последующей заделкой кирпичом или бетоном.

Рядовые блоки устанавливают, ориентируя низ по обрезу блоков нижнего ряда, верх — по разбивочной оси. Блоки наружных стен, устанавливаемые ниже уровня грунта, необходимо выравнивать по внутренней стороне стены, а выше — по наружной. Сборные элементы монтируют на подготовленную постель из цементного раствора. Излишки раствора необходимо удалить до их схватывания, иначе при устройстве вертикальной гидроизоляции стен подвала придется потратить немало сил и времени на их очистку.

Вертикальные стыки между блоками по мере их монтажа заполняют раствором - сначала обмазывают густым цементным раствором швы снаружи, а затем заполняют стыки раствором с уплотнением методом штыкования, используя для этого гладкие арматурные стержни диаметром 16—22 мм.

При строительстве фундамента с подвалом на сухих непучинистых грунтах бетонные блоки стен подвалов марки ФБС можно монтировать непосредственно на выровненное песком основание грунта. Такой вариант конструкции без использования элементов ленточного фундамента марки ФЛ применяют и при устройстве малозаглубленного фундамента.

Прерывистый сборный фундамент Ленточные фундаменты
Рис. 5. Прерывистый сборный фундамент: 1 — блоки-подушки типа ФЛ; 2 — стеновые блоки типа ФБС  

Ленточные фундаменты, устанавливаемые в мелкопромерзающих пучинистых грунтах с расположением грунтовых вод в момент производства работ ниже подошвы фундаментов: 1 — бутовая кладка с наклонными стенами; 2 — кирпичная кладка; 3 — железобетонный сердечник, жестко связанный с железобетонной опорной плитой; 4 — монолитный бетон; 5 — цоколь; 6 — засыпка грунтом; 7 — железобетонная опорная плита; 8 — бетонная плита; 9 — арматура; УПГ — уровень промерзания грунта. 

 

Ленточные прерывистые сборные фундаменты

Возведение ленточного фундамента из сборных типовых блоков-подушек не всегда является оптимальным решением, так как проектируемая расчетная ширина подошвы фундамента обычно не совпадает с шириной типовых плит-подушек (ФЛ), которые чаще всего шире необходимых размеров. В случае несовпадения расчетной ширины фундамента с шириной типовых блоков устраивают прерывистый фундамент (рис. 5) из блоков-подушек ближайшего большого типового размера, укладывая их с промежутками.

Прерывистые фундаменты проектируют с превышением или без превышения нормативного давления основания. Расстояния С между блоками-подушками в первом случае определяют по таблице, а во втором — по формуле

C = ((b/bн)-1)*L

где b и L — соответственно ширина и длина типового блока подушки; bн — расчётная ширина непрерывного фундамента, м.

Расстояние между блоками-подушками прерывистого фундамента и величина превышения нормативного давления основания

Расчетная ширина непрерывного фундамента,
bн, м
Ширина прерывистого фундамента,
bпр, м
Расстояние между блоками-подушками С, м Величина превышения нормативного давления основания,
кгс/см2
0,5 0,8 0,9 1,12
0,6 0,8 0,6 1,09
0,6 1 0,9 1,18
0,7 0,8 0,25 1,07
0,7 1 0,75 1,15
0,8 1 0,3 1,09
0,9 1 0,2 1,06
0,9 1,2 0,6 1,12
1 1,2 0,4 1,1
1 1,4 0,75 1,13
1,1 1,2 0,3 1,07
1,1 1,4 0,55 1,11
1,3 1,4 0,15 1,07
1,3 1,6 0,6 1,14
1,4 1,6 0,4 1,12
1,5 1,6 0,25 1,11

Примечание. Таблица составлена для блоков длиной от 1,18 до 2,38 м

Последовательность монтажа прерывистых сборных элементов фундамента выполняют в том же порядке, что и при устройстве сплошных ленточных фундаментов, начиная с установки маячных блоков в углах здания. Промежутки между блоками-подушками засыпают песком до устройства горизонтальной гидроизоляции.

Свайные фундаменты

 

Типы свай и способы их устройства

Свайные фундаменты предназначаются для передачи нагрузки на нижние, большей несущей способности слои грунта. Возможно применение свайных фундаментов и в плотных грунтах в целях уменьшения объема земляных работ, расхода бетона, снижения трудоемкости и стоимости строительства. Такие фундаменты позволяют уменьшить осадки, что особенно важно для сохранения в целости конструкций дома.

Наибольшее распространение в последние годы получили железобетонные сваи квадратного и круглого сечений, сплошные или пустотелые. Передача нагрузки от сооружения на грунт возможна двумя способами. Так называемые сваи-стойки проходят через слабые грунты, упираются в прочные слои и передают нагрузку на них. Если глубина залегания прочных слоев превышает разумные пределы, применяются «висячие» сваи. В этом случае нагрузка передается основанию за счет сил трения между боковой поверхностью свай и упрочненным при их забивании слоем грунта.

По способу изготовления и помещения в грунт различают сваи забивные и набивные. Забивные сваи изготавливаются заранее и погружаются в грунт за счет механического нагружения — с помощью молота, вибрации или вдавливания.

Набивные сваи устраивают из бетона или железобетона путем заполнения скважины в грунте. Этот способ наиболее приемлем при строительстве загородных домов. При устройстве свайных фундаментов своими силами бурение скважины выполняют садовым буром с удлиненным стержнем. Диаметр скважины должен быть не менее 200 мм. Вместо садового бура лучше использовать фундаментный бур ТИСЭ-Ф (рис. 1). Минимальное заглубление нижних концов свай в несущий слой грунта принимается по таблице.

Минимальное заглубление нижних концов свай

Вид грунта Величина заглубления, м
Пески средние плотные, а также глинистые грунты при консистенции 0,2 < В < 0,3     2 
Пески крупные, средней плотности, а также глинистые грунты при консистенции 0 < В < 0,2     1
Пески гравелистые, крупнообломочные грунты независимо от их плотности, глинистые грунты при консистенции В < 0      0,3 

Сваи располагают под стенами домов аналогично столбам столбчатого фундамента с заделкой их верхней части в монолитный ростверк-цоколь или закреплением головок свай с элементами сборного ростверка (см. рис. 2).

                                Устройство фундаментного бура ТИСЭ-Ф Примеры сопряжения головок круглых набивных свай со сборным и монолитным ростверком
Рис. 1. Устройство фундаментного бура ТИСЭ-Ф: 1 — рукоятка; 2 — шнур; 3 — штанга; 4 — фиксатор; 5 — стопор; 6 — плуг; 7 — накопитель  Рис. 2. Примеры сопряжения головок круглых набивных свай со сборным и монолитным ростверком: а — сопряжение элементов железобетонного сборного ростверка (балки, перемычки) с головкой набивной сваи; б — сопряжение монолитного железобетонного ростверка (пояса) с головкой набивной сваи; 1 — набивная свая; 2 — армированный оголовок из монолитного бетона; 3 — сборный железобетонный ростверк; 3' — монолитный железобетонный ростверк; 4 — монтажный стык между сборными элементами ростверка (выполняется мелкозернистым бетоном М200); 5 — армированный стержень d 18—22 мм с приваренным к нему коротышем (обрезком) 20—25 см; арматуры d 18—22 мм; 5'  — арматурные стержни сопряжения оголовка сваи с монолитным ростверком; 6 — полость сваи (заполняется бетоном в зоне промерзания, ниже - песком или местным грунтом); 7 — стальная закладная деталь с приваренной пластинкой 

В сыпучих грунтах, не держащих стенки скважины, можно использовать отрезки асбестоцементной или металлической трубы подходящего диаметра, которую устанавливают в устье скважины, постепенно удаляя из ее полости грунт. Полость по окончании погружения заполняют бетоном.

 

Устройство фундаментного бура

Для бурения скважин под устройство набивных свай эффективнее использовать ручной фундаментный бур ТИСЭ-Ф массой 7 кг (рис. 1). Бур выполнен с раздвижной штангой, накопителем грунта и откидным плугом, управляемым шнуром. Плуг опускается вниз под собственным весом, надежно фиксируется в промежуточных положениях двухзвенным стопорным механизмом, а поднимается в вертикальное положение — за шнур. В сложенном положении длина бура 125 см, а в раздвинутом — 225 см. Ширина рукоятки — 55 см. Длина штанги фиксируется винтовым стопором.

Бур ТИСЭ-Ф отличается от традиционного садового бура наличием эффективных резцов для вспахивания грунта и отсутствием в самом низу направляющего штыря. Более того, в накопителе грунта выполнено отверстие для прохождения грунта. Это позволяет существенно снизить вертикальные усилия, прилагаемые к буру. Прямолинейность же скважины обеспечивается боковыми стенками накопителя грунта, исключающими увод бура в сторону. Бур позволяет забирать каменистые включения в грунте размером до 4—5 см. Бурение вертикальной скважины выполняется при снятом плуге вращением бура по часовой стрелке. Глубина бурения — на 10—15 см ниже расчетной глубины промерзания грунта. По мере заглубления бур поднимается и опорожняется. На тяжелых грунтах бурение скважины глубиной 1,5 м занимает около 30 мин. Расширение нижней части скважины выполняется плугом. Вращение бура выполняется против часовой стрелки. Длительность расширения — до 30 мин. После установки арматуры и заполнения нижней части скважины бетоном в цилиндрическую часть скважины вставляют толевую рубашку.

После окончательного заполнения скважины бетоном образуется столб, воспринимающий нагрузку от 5 до 10 т. Такой столб не вытащить никакими морозами. На один столб, заложенный на глубину 1,5 м, требуется около 0,12 м3 бетона. Завершается выполнение набивной сваи созданием ростверка.

 

Железобетонные сборные и монолитные ростверки

Равномерное распределение нагрузки между сваями фундамента осуществляется ростверком, конструкция которого выполняется по верху свай под несущими элементами здания. Ростверк по сваям выполняется, как правило, из сборных железобетонных элементов (балок). Высота ростверка — не менее 300 мм. Ширина при однорядном расположении свай принимается равной ширине цоколя, а при отсутствии цоколя — толщине стен первого этажа, но не менее 400 мм. Расстояние между осями свай в ряду должно быть не менее 3d (где d — диаметр сваи).

Пересечение (разрезание) ростверка санитарно-техническими и другими трубопроводами не допускается. Отклонение центров свай после погружения или бетонирования не должно быть более 5 см. Расстояние между подошвой ростверка и поверхностью планировки должно составлять не менее 10 —15 см. Варианты устройства сборного и монолитного ростверка с опиранием на оголовки свай показаны на рис. 2.

При монтаже сборных элементов ростверка особое внимание следует уделить их закреплению на оголовке свай. Для этого в процессе заполнения полости набивной сваи бетонной смесью М200 бетонируют вертикально Т-образный арматурный стержень 5 (рис. 2, а) и на оголовок сваи укладывают горизонтально другой арматурный стержень длиной, равной ширине сваи с приваренными с обеих сторон пластинками-ограничителями высотой, достаточной для захвата сваи и монтируемого элемента ростверка (см. рис. 3 «Столбчатые фундаменты»). Затем монтажный стык 4 бетонируют, а коротыши вертикального стержня 5 приваривают к монтажным петлям ростверка, используя нужной длины арматурные стержни. В случае замены сборной балки ростверка на сборные железобетонные несущие перемычки их необходимо между собой закрепить сваркой посредством арматурных стержней или связать проволочной скруткой.

После устройства ростверка все стыки и швы заполняют мелкозернистым бетоном или цементным раствором. Перед возведением стен дома проверяют отметки верхних плоскостей ростверка и при необходимости выравнивают цементным раствором под один монтажный горизонт (горизонтального уровня с одинаковыми отметками). Для этого в отсутствие нивелира можно воспользоваться водяным уровнем. Окончательную проверку прямоугольности плана и размеров ростверка выполняют измерением его диагоналей и сторон.

Сплошные плитные фундаменты

Плитные фундаменты являются разновидностью мелкозаглубленных, а точнее, незаглубленных фундаментов, глубина заложения которых составляет 40 — 50 см. В отличие от мелкозаглубленных ленточных и столбчатых фундаментов, они имеют жесткое пространственное армирование по всей несущей плоскости, позволяющее без внутренней деформации воспринимать знакопеременные нагрузки, возникающие при неравномерном перемещении грунта.

Фундаменты, которые вместе с грунтом имеют сезонные перемещения, называются плавающими. Их конструкция представляет собой сплошную или решетчатую плиту, выполненную из монолитного железобетона, из сборных перекрестных железобетонных балок или из сборных плит с монолитным покрытием (рис. 1).

Схемы устройства незаглубленных монолитных и сборно-монолитных фундаментных плит

Рис. 1. Схемы устройства незаглубленных монолитных и сборно-монолитных фундаментных плит: а — сплошная фундаментная плита из монолитного железобетона; б — сборно-монолитная фундаментная плита; 1 — грунт основания; 2 — подстилающий слой из песка (щебня) толщиной 100 — 200 мм; 3 — монолитная железобетонная плита толщиной 200 — 250 мм; 4 — двухслойная оклеечная гидроизоляция; 5 — бетонный защитный слой толщиной 60 — 80 мм; 6 — выравнивающая цементно-песчаная стяжка под полы толщиной 20 — 25 мм; 7 — дорожная железобетонная плита М-300 (3000*1750*170 или 6000*2000*140 мм)

Устройство плитного фундамента связано с расходом бетона, арматуры и может быть целесообразно при сооружении небольших и компактных в плане домов или других построек, когда не требуется устройство высокого цоколя, и сама плита используется в качестве пола. Для домов более высокого класса чаще устраивают фундаменты в виде ребристых плит или армированных перекрестных лент.

Большая площадь опоры плит позволяет снизить давление на грунт до 10 кПа (0,1 кгс/см2), а перекрестные ребра жесткости создают конструкцию, достаточно устойчивую к знакопеременным нагрузкам, возникающим при замораживании, оттаивании и просадке грунта. Для их устройства применяют высокопрочный бетон (не ниже класса В12,5) и арматурные стержни диаметром не менее 12 — 16 мм. Относительно большой расход бетона и арматурной стали можно считать оправданным, если все другие технические решения фундаментов в этих условиях не могут гарантировать их надежную работу. В зданиях, где полы расположены невысоко над планировочной отметкой земли, такие фундаменты могут стать даже более экономичными, чем столбчатые (не надо устраивать цокольное перекрытие и ростверк).

Сплошная незаглубленная плита в составе пространственной системы «плита — надфундаментное строение» обеспечивает восприятие внешних силовых воздействий и возможных деформаций грунтового основания и исключает необходимость различного рода мероприятий, предотвращающих неравномерные деформации грунта, на которые обычно в условиях слабых, песчаных и пучинистых грунтов затрачиваются значительные ресурсы.

Применение незаглубленных фундаментных плит позволяет снизить расход бетона до 30%, трудовые затраты — до 40% и стоимость подземной части — до 50% по сравнению с заглубленными фундаментами. Чтобы уберечь такие фундаменты от промерзания, их надо утеплять.

Морозоустойчивые фундаменты мелкого заложения представляют собой практичную альтернативу более дорогостоящим фундаментам глубокого заложения в холодных регионах с сезонным промерзанием грунта и потенциальными возможностями морозного пучения. Мелкое заложение морозоустойчивых фундаментов достигается за счет устройства теплоизоляции, размещаемой в самых важных местах, — практически вокруг дома. Таким образом, становится возможным выполнять фундаменты глубиной заложения 40 — 50 см даже в условиях очень сурового климата. Технология морозоустойчивых фундаментов мелкого заложения получила широкое признание в Скандинавских странах. Морозоустойчивые фундаменты выполняются в виде монолитной железобетонной плиты толщиной 25 — 20 см с утолщенными краями — контурными ребрами, а для защиты от мороза используют пенопропиленовую изоляцию (пенопласт) (рис. 2).

Схема утепленной монолитной фундаментной плиты с утолщенными ребрами Схема армирования монолитной плиты

Рис.2. Схема утепленной монолитной фундаментной плиты с утолщенными ребрами: 1 — материковый грунт; 2 — уплотненная песчаная подушка; 3 — монолитная железобетонная плита; 4 — утеплитель с гидроизоляцией; 5 — бетонная отмостка 

Рис. 3. Схема армирования монолитной плиты: 1 — арматурные стержни АIII, d 12—16 мм; шаг 200 мм; 2 — арматурные стержни АIII, d 8 мм, шаг 400*400 мм; 3 — защитный слой бетона толщиной 35 мм 

Тепло, уходящее из дома в грунт через фундаментную плиту, плюс геотермальное тепло заставляют линию промерзания подниматься вверх по периметру фундамента. Специалистам известно, что тепло от здания фактически уменьшает глубину промерзания по периметру фундамента. Другими словами, граница промерзания повышается рядом с любым фундаментом, если здание обогревается или имеет изоляцию на уровне земли.

Плитные фундаменты
Плитные фундаменты: 1 — стены; 2 — монолитная армированная фундаментная плита; 3 — ребра фундамента (можно расположить гораздо чаще). 

Изоляция по периметру фундамента предотвращает тепловые потери и передает тепло через фундаментную плиту в грунт под фундаментом здания. В то же время источники геотермального тепла излучают тепло в направлении фундамента, что приводит к уменьшению глубины промерзания вокруг здания.

При строительстве домов с использованием морозостойких фундаментов одна из проблем, с которой сталкиваются строители, состоит в том, что полипропилен разлагается под действием ультрафиолетового облучения и имеет недостаточную ударную стойкость. Хлорвиниловый пластик в виде рулона шириной 610 мм, длиной 15 м хорошо подходит для этих целей. Верхний наружный край фундамента оборачивают пленкой, начиная с внутреннего края плиты. Пластик легко приклеивается к краю бетона и полипропиленовому пенопласту мастикой, совместимой с пенопластом. Гибкий хлорвиниловый пластик приклеивается на месте.

Важно отметить экономию затрат при устройстве морозоустойчивых фундаментов в сравнении с традиционными. Она составляет примерно 3% общих обязательных затрат на строительство дома.

Сплошные плитные фундаменты устраивают и заглубленными в виде монолитной плиты под всем зданием (рис. 3). Подобные конструкции обеспечивают максимально равномерное распределение нагрузки на основание и, как следствие, — равномерную осадку здания, а также хорошо защищают подвальные помещения от подпора грунтовых вод.

Сплошные фундаменты возводят на слабых или неоднородных грунтах при необходимости передачи на них значительных нагрузок. Такие конструкции хорошо себя зарекомендовали и при малоэтажном строительстве, в особенности если необходима организация подвального или полуподвального помещения под зданием. Устройство подвальных или полуподвальных помещений затрагивает еще один важный аспект проектирования и строительства — гидрозащиту (гидроизоляцию и др.) фундаментов от грунтовых вод и влаги. Грамотная оценка гидрологической ситуации на месте застройки, правильный выбор схемы гидрозащиты и качественное проведение работ - основные условия, выполнение которых во многом определяет безаварийность работы как подземной, так и надземной частей зданий.

Нарушение или разрушение конструкции здания практически всегда сопряжено с нарушениями или разрушением его фундамента. Это может происходить из-за ошибок, допущенных при проектировании или строительстве. Лишь при условии ответственного подхода ко всему комплексу работ — от проекта до практического воплощения - можно построить надежный дом, который прослужит многие десятки лет. Варианты устройства незаглубленных плитных фундаментов показаны на рис. 1.

Столбчатые фундаменты

 

Целесообразность выбора столбчатых фундаментов

Столбчатые фундаменты возводят в основном под дома без подвалов с легкими стенами (деревянными, щитовыми, каркасными). Закладывают их и под кирпичные стены, когда требуется глубокое заложение и ленточный фундамент неэкономичен. Столбчатые фундаменты по расходу материалов и трудозатратам в 1,5— 2 раза экономичнее ленточных.

В зависимости от конструкции здания (прежде всего его массы и этажности) столбы для фундамента могут быть каменные, кирпичные, бетонные, бутобетонные, железобетонные и из других материалов. Чаще всего при устройстве столбчатых фундаментов применяют готовые сборные бетонные и железобетонные блоки. Столбчатые фундаменты обязательно устанавливают под углы дома, в местах пересечения стен, под стойками каркаса, тяжелыми и несущими простенками, балками и другими местами сосредоточенной нагрузки. Для уменьшения давления на слабые грунты столбчатые фундаменты из штучных материалов уширяют в нижней части, делая уступы высотой не менее двух рядов кладки.

Если глубина заложения столбчатого фундамента более 1 м и устройство фундамента из мелкоштучного материала трудновыполнимо, применяют железобетонные столбы, асбестоцементные или металлические трубы. Если при рытье ям в них нет воды, такие фундаменты можно делать с опорной плитой из монолитного бетона, укладываемого на дно во время установки столбов. Расстояние между столбами принимается 1,2—2,5 м. По верху столбов должны быть уложены обвязочные балки для создания условий совместной их работы. При расстоянии между столбами фундамента больше 2,5—3 м по их верху укладываются более мощные рандбалки (железобетонные, металлические).

Минимальное сечение фундаментных столбов, мм, принимается в зависимости от того, из какого материала они изготовлены: бетон — 400; бутобетон — 400; кладка из естественного камня — 600; из бута-плитняка — 400; из кирпича выше уровня земли — 380, а при перевязке с забиркой — 250.

Сооружать столбчатые фундаменты предпочтительнее на пучинистых грунтах, так как с минимальными затратами их можно устанавливать ниже глубины промерзания. При этом действие касательных сил, вызываемых морозным пучением грунта, на поверхность столбов минимально. Избежать отрицательного воздействия сил морозного пучения не всегда удается только за счет увеличения глубины заложения фундамента ниже уровня промерзания. Касательные силы морозного пучения нейтрализуют следующим образом: основание фундамента делают уширенным в виде площадки-анкера, которая не позволяет вытащить фундамент из земли при морозном пучении. Внутри такого фундамента желательно заложить арматурный каркас, который защитит фундамент от разрыва. Если фундамент возводят из камня, кирпича, мелких блоков, монолитного бетона без армирования, его стены необходимо делать сужающимися кверху.

При большой глубине промерзания в пучинистых грунтах эффективны анкерные столбчатые железобетонные, монолитные либо сборные фундаменты. На такие фундаменты незначительно влияние сил морозного пучения, действующих на боковую поверхность, так как столбы выполняют с минимальным поперечным сечением (см. рис. 1).

Столбчатые малозаглубленные фундаменты с сужающимися стенками

Рис. 1. Столбчатые малозаглубленные фундаменты с сужающимися стенками: а — кирпичная кладка; б — монолитный бетон; 1 — песчаная подушка; 2 — слой толя; 3 — столбчатый кирпичный фундамент; 4 — оклеечная гидроизоляция; 5 — сборный железобетонный ростверк; 6 — насыпной уплотненный грунт; 7 — бетонная подготовка; 8 — кирпичный столбик; 9 — бетонный фундамент; 10 — монолитный железобетонный пояс; 11 — железобетонная плита перекрытия; 12 — плитный утеплитель

Дополнительными мерами уменьшения влияния сил морозного пучения могут быть: покрытие боковых поверхностей фундамента материалами, уменьшающими трение грунта, а также утепление поверхностного слоя грунта вокруг фундамента. Глубина заложения фундаментов находится в непосредственной зависимости от глубины промерзания грунтов и уровня грунтовых вод.

Для повышения устойчивости столбчатых фундаментов, во избежание горизонтального их смещения и опрокидывания, а также для устройства опорной части цоколя между столбами делают ростверк. При устройстве столбчатых фундаментов под деревянные постройки функцию ростверка может выполнять деревянная обвязка из бревен или бруса. При этом пространство между планировочной отметкой земли (отмосткой) и обвязкой заполняют забиркой.

Опорной частью цоколя при каменных и кирпичных стенах может служить железобетонный ростверк, укладываемый поверх столбов. Выполняют ростверк и в виде рядовой перемычки, армированной 4 — 6 арматурными стержнями диаметром 10 — 12 мм, уложенными по слою бетона толщиной 70 мм. Высота рядовой перемычки должна составлять 1/4 пролета, но не менее 4 рядов кладки. Ростверк может быть выполнен в виде монолитной или сборной железобетонной рандбалки.

При сооружении монолитных железобетонных столбчатых фундаментов потребуются дополнительные затраты, связанные с изготовлением и установкой арматурных каркасов, приготовлением и укладкой бетонной смеси, сборкой и разборкой опалубки ростверка и другими работами. При устройстве фундаментов на пучинистых грунтах необходимо иметь четкое представление о том, что строительство дома и ввод его в эксплуатацию должны осуществляться в один строительный сезон. Фундаменты, возведенные на пучинистых грунтах и оставленные на зимнее время без нагрузки (без стен, перекрытий и крыш), могут деформироваться.

Непредвиденные деформации могут произойти и в том случае, когда построенный дом в зимнее время не эксплуатируется и не отапливается, а глубина заложения фундамента была рассчитана на тепловой режим отапливаемого дома.

Сборные столбчатые фундаменты имеют следующие преимущества перед ленточными:

столбчатые фундаменты в зависимости от шага опор при одинаковой глубине заложения примерно в 1,5 — 2 раза экономичнее ленточных по расходу материалов и стоимости;

применение сборных столбчатых фундаментов значительно сокращает трудоемкость работ и продолжительность работ нулевого цикла примерно вдвое;

стоимость столбчатых фундаментов можно снизить еще приблизительно в 1,5 раза, если столбы выполнять монолитными в инвентарной опалубке, уменьшив их сечение вдвое по сравнению со сборными.

Столбчатые фундаменты имеют еще одно положительное качество, которое заключается в том, что грунты основания под отдельно стоящими опорами работают лучше, чем под сплошными ленточными, вследствие чего и осадка под ними при равных давлениях на грунт значительно меньше, чем у ленточных. Снижение величины осадки дает возможность соответственно повысить давление на грунт на 20 — 25% и, следовательно, уменьшить общую площадь фундамента.

Как уже говорилось, самыми опасными силами, действующими на фундамент малоэтажных индивидуальных домов, являются силы морозного пучения. Поэтому почти все приводимые варианты устройства фундаментов рассматриваются с точки зрения их строительства на пучинистых грунтах. Принято считать, что при строительстве на пучинистых грунтах глубина заложения фундаментов должна быть ниже расчетной глубины сезонного промерзания.

Однако для малонагруженных фундаментов небольших домов силы пучения обычно превосходят суммарную нагрузку от дома, действующую на фундамент, вследствие чего и происходят различного рода деформации. Поэтому при строительстве на пучинистых грунтах домов без подвалов лучше сооружать малозаглубленные, мелкозаглубленные или незаглубленные фундаменты. Поясним их отличия.

Малозаглубленными считают фундаменты с глубиной заложения 0,5 — 0,7 нормативной глубины промерзания. Например, при нормативной глубине промерзания 140 см глубина малозаглубленного фундамента составит 140x0,5 = 70 см.

Мелкого заложения считают те фундаменты, где отношение высоты к ширине подошвы фундамента не превышает 4. Незаглубленные фундаменты — те, глубина заложения которых составляет 40 — 50 см.

Грамотно выполненные малозаглубленные фундаменты обеспечат:

  • снижение величин сезонного колебания пучения грунтов и фундаментов;
  • сокращение объемов работ и сроков возведения фундаментов;
  • снижение стоимости возведения фундаментов за счет сокращения расхода материалов и трудозатрат;
  • возможность устройства фундаментов практически при любых гидрогеологических условиях площадки.

 

Конструкции столбчатых фундаментов

Столбчатые фундаменты из готовых типовых бетонных блоков представляют собой конструкцию, состоящую из набора отдельных блоков, укладываемых на цементный раствор. Количество блоков зависит от заглубления фундамента (рис. 2). Для устройства фундаментных столбов выкапывают с откосами ямы необходимой глубины. Размеры в плане зависят от ширины и длины применяемых сборных элементов плюс не менее 20 см с каждой стороны для устройства песчаной подушки.

Схема устройства сборного столбчатого фундамента

Рис. 2. Схема устройства сборного столбчатого фундамента: а — нормально заглубленный фундамент; б — малозаглубленный фундамент; 1 — песчаная подушка; 2 — бетонный блок Ф 4.5.3 (380*500*280) или Ф 4.4.3 (380*400*280); 3 — грунт обратной засыпки; 4 — цементная гидроизоляция; 5 — оклеечная гидроизоляция; 6 — бетонная отмостка.

В зависимости от несущей способности грунта основания, общей нагрузки, действующей на 1 м2 подошвы фундамента, определяется опорная площадь фундамента. Площадь сборного столбчатого фундамента можно увеличить за счет замены бетонных блоков Ф 4.5.3 (Sф = 1900 см2), Ф 4.4.3 (Sф = 1520 см2) на ФБС 9-5-6 (Sф = 4440 см2). Если и такая площадь фундаментного блока будет недостаточна, тогда под эти блоки укладывают блоки-подушки марки ФЛ, например ФЛ 6-12-3 (Sф = 7080 см2) или ФЛ 8-12-3 (Sф = 9440 см2). Технические данные фундаментных блоков приведены в табл. 15 и 16.

Предприятия стройиндустрии изготавливают различные по размерам сборные элементы фундаментов и присваивают им свою маркировку. Для небольших садовых домиков под столбчатые фундаменты можно применить, например, блоки ФСД-1 (Sф = 1500 см2) - размеры 500x300x300 мм, масса 108 кг, объем бетона 0,045 м3.

 

Столбчатые фундаменты с ростверками

Для устойчивости столбов и устройства опоры для возведения стен дома после выверки отметок верхнего обреза фундаментных столбов (монтажного горизонта) устраивают ростверк из сборных железобетонных элементов или монолитного железобетона. Вариант столбчатого фундамента с ростверком из типовых элементов показан на рис. 3.

Столбчатый фундамент с ростверком из сборных типовых элементов Заглубленные столбчатые фундаменты, устраиваемые на пучинистых грунтах

Рис. 3. Столбчатый фундамент с ростверком из сборных типовых элементов: 1 — блоки ленточного фундамента ФЛ 8-12-3 (1180*800*300 мм); 2 — бетонные блоки ФБС 9-5-6 (880*500*580 мм); 3 — ростверк из железобетонных перемычек 5 ПБ-25-37 П (2460*250*200 мм); 4 — проволочная скрутка; 5 — армированный монолитный пояс

Рис. 5.  Заглубленные столбчатые фундаменты, устраиваемые на пучинистых грунтах: а — сборный фундамент; б — сборно-монолитный фундамент; 1 — песчаная подготовка толщиной 10 —15 см; 2 — блок фундамента ФЛ 6-12-3 (1180*600*300 мм); 3 — асбестоцементная труба диаметром 200 — 300 мм; 4 — бетон класса В15 (М200); 5 — выпуск арматурных стержней не менее 10 — 15 см (класс арматуры А-III, диаметром 18—22 мм); 6 — опорная плита из монолитного железобетона; 7 — сердечник из металлической трубы диаметром 80 —100 мм

Вместо железобетонных перемычек 5ПБ-25-37П могут использоваться перемычки 5ПБ-30-37П или БУ-28-1 длиной 2980 мм. Если нагрузки на перемычки превышают их расчетную несущую способность, то по верху перемычек устраивают обвязочный монолитный железобетонный пояс (рис. 4). Особенно это касается случаев строительства столбчатых фундаментов на просадочных и насыпных грунтах.

Столбчатые малозаглубленные фундаменты могут изготовляться из кирпича и монолитного бетона (рис. 1). Для этого в отрытую яму засыпают с послойным уплотнением влажный песок слоем толщиной 50 — 60 см, расстилают толь или рубероид, чтобы цементное молочко из бетона (раствора) не просачивалось в песок, и начинают кирпичную кладку на цементном растворе М50, а при монолитном варианте - укладку бетона М200. Стенки столбов делают сужающимися кверху, как показано на рис. 1.

Столбчатый фундамент из сборных элементов с монолитным поясом
Рис. 4. Столбчатый фундамент из сборных элементов с монолитным поясом: 1 — фундаментный блок ФЛ 8-12-3; 2 — стеновой блок ФБС 9-5-6; 3 — перемычки 5ПБ-25-37П; 4 — армированный монолитный пояс  

После окончания устройства столбчатых фундаментов проверяют отметки верха столбов и при необходимости выравнивают цементным раствором состава 1:2. После этого приступают к устройству сборного, сборно-монолитного или монолитного железобетонного пояса (ростверка), а при строительстве деревянного дома — обвязки из бревен или брусьев. Устройство монолитного пояса обеспечит надлежащую продольную жесткость и устойчивость фундамента. До начала устройства монолитного пояса необходимо сборные перемычки надежно соединить между собой. Для этого монтажные петли крест-накрест связывают проволочной скруткой или соединяют с помощью сварки обрезки арматуры диаметром 8 —10 мм. Затем по верху перемычек устраивают опалубку и расстилают слой цементного раствора М100 толщиной 4 — 5 см, устанавливают арматурный каркас и укладывают бетонную смесь М200. Поверхность бетона выравнивают и закрывают любым рулонным материалом для предохранения от атмосферных воздействий. После набора прочности и устройства гидроизоляции можно приступать к монтажу плит перекрытий.

 

Фундаменты в глубокопромерзающих пучинистых грунтах

При строительстве домов в глубокопромерзающих пучинистых грунтах для уменьшения влияния сил морозного пучения целесообразно устраивать столбчатые фундаменты ниже уровня промерзания грунта. Для этого можно использовать не только традиционные фундаментные элементы, но и асбестоцементные, бетонные и металлические трубы. Варианты устройства таких фундаментов показаны на рис. 5.

Устройство сборного фундамента (рис. 5, а) выполняют в следующей технологической последовательности. На подготовленную песчаную подушку укладывают блок типа ФЛ, устанавливают вертикально асбестоцементную трубу нужной длины и на уровне земли фиксируют ее положение. У основания под углом 45° выполняют бетонную забудку, фиксирующую положение трубы на фундаментном блоке. Поверхность бетонной забудки закрывают толью (рубероидом) и присыпают грунтом (песком). Вместо цельной трубы фундаментный столб может быть смонтирован из отдельных составляющих. После устройства бетонной забудки переходят к устройству следующего столбчатого фундамента, давая время для набора прочности бетона забудки. Закончив монтаж всех фундаментных блоков, возвращаются к первому столбчатому фундаменту и выполняют обратную засыпку грунтом с тщательным послойным уплотнением. При устройстве столбчатого фундамента из отдельных отрезков труб засыпку с трамбовкой выполняют параллельно с их установкой. Закрепив таким образом фундаментный столб, приступают к установке арматурных стержней или сердечника из металлической трубы. Чтобы предотвратить сдвиг арматуры во время бетонирования, предварительно в асбестоцементный столб заливают бетон на высоту 10 — 15 см и в него погружают по центру сердечник металлической трубы или отдельные арматурные стержни на расстоянии от стенки столба 25 — 35 мм, лучше — пространственный арматурный каркас, выполненный из тех же отдельных арматурных стержней, связанных хомутом из арматурной проволоки диаметром 3 — 5 мм. Армированный фундаментный столб послойно (30 — 40 см) заполняют пластичной бетонной смесью М200 осадкой конуса (ОК) 6 — 8 см. Уплотняют бетон глубинным вибратором или штыкованием гладкой стержневой арматурой диаметром 20 — 25 мм класса А-1.

При возведении сборно-монолитного столбчатого фундамента (см. рис. 5, б) установку асбестоцементной трубы и металлического сердечника выполняют по свежеуложенной бетонной смеси опорной плиты, утапливая сердечник в тело плиты на 10 —15 см. В остальном последовательность выполнения работ аналогична устройству сборного варианта фундамента.

Контроль планового и высотного положения фундамента

При устройстве фундамента подрядной строительной организацией качество возведенного фундамента оформляется актом, подписанным представителями строительной организации и технического надзора заказчика или самим застройщиком.

К акту прилагается составленная строительной организацией исполнительная схема. Исполнительная схема составляется на основании исполнительной геодезической съемки конструкций фундамента, в процессе которой определяются фактическое плановое и высотное положение, а также вертикальность конструктивных элементов фундамента и его размеры или отклонения от проектных размеров. Отдельно должны быть представлены исполнительные чертежи подземных инженерных сетей с привязкой ввода в дом канализации, водопровода и др.

Контроль положения конструкций фундамента в плане и его геометрические параметры выполняют непосредственно измерением расстояний стальной рулеткой. Контроль высотного положения опорных плоскостей (горизонтальность верхнего среза фундамента) выполняют геометрическим нивелированием. Перпендикулярность продольных и поперечных осей (стен) фундамента определяют теодолитом. Вертикальность стен (столбов) фундамента выверяют по отвесу.

Геодезическая исполнительная схема фундамента
Геодезическая исполнительная схема фундамента:
Пояснения: 1 — цифра в кружке указывает порядковый номер места определения отметки маяка; 2 — цифра со знаком «минус» показывает толщину выравнивающего слоя раствора; Толщину раствора между точками определяют интерполяцией 

Исполнительная схема представляет собой план фундамента, на который наносят его фактические размеры и отклонения по высоте. По результатам проверки определяют допустимые предельные отклонения (см. СНиП 3.03.01-87, табл. 12). Они не должны превышать следующие величины:

  • отклонения стен фундамента от вертикали — 20 мм;
  • смещение фундамента от разбивочных осей (рисок) — 12 мм;
  • отклонения отметок маяков относительно монтажного горизонта —  ±5 мм.

За отметку монтажного горизонта, как правило, принимают среднее значение величин перенесенных отметок или отметку самой высокой точки (для удобства выравнивания горизонта под одну отметку). Выравнивают поверхность фундамента под монтажный горизонт цементно-песчаным раствором по предварительно установленным маякам, толщина и месторасположение которых перенесены в натуру из исполнительной схемы.

 

Составление исполнительной схемы фундамента

В случае если строительство фундамента ведет не подрядная строительная фирма, а сам застройщик или наемные рабочие, то исполнительную схему можно выполнить и без применения геодезических инструментов (теодолита и нивелира). Достаточно иметь отвес, строительный уровень, стальную рулетку и водяной уровень. Сначала определяют самую высокую точку на поверхности фундамента, которую принимают за условную нулевую отметку монтажного горизонта, затем эту отметку переносят с помощью водяного уровня на другие заранее обозначенные и пронумерованные на плане и фундаменте места. По приставленной к уровню линейке определяют в миллиметрах величину (толщину раствора маяка) для выравнивания монтажного горизонта. Маячки для выравнивания монтажного горизонта можно устанавливать сразу по ходу работы с водяным уровнем. Для этого уложенный раствор выравнивают мастерком до совмещения с уровнем воды водяного уровня.

Геометрические размеры фундамента измеряют рулеткой, прямоугольность — измерениями по диагонали, а вертикальность — по отвесу. Горизонтальность выравнивающего слоя раствора, уложенного по маякам, определяют строительным уровнем. Месторасположение ввода в дом подземных инженерных сетей отмечают на чертеже (разрезе фундамента), определяя точки ввода по двум перпендикулярным засечкам расстоянием от верха фундамента, углы дома, дверного проема и т.д.

Ошибки при устройстве фундаментов

Основные ошибки, которые допускают при устройстве фундаментов под легкие строения (к ним относятся и дома в каркасном исполнении), так или иначе связаны с тем, что не учитываются действия сил морозного пучения. При этом осадки в домах облегченной конструкции, как правило, незначительны и на эксплуатационные характеристики здания не оказывают влияния.

Строительные нормы и правила (СНИиП) предусматривают в пучинистых грунтах заглубление подошвы фундаментов ниже расчетной глубины промерзания (рис. 1, 2, 3). Если это условие соблюдается, то силы морозного пучения, которые могут достигать 20—60 т/см2, не действуют на подошву фундамента. При этом на фундамент действуют касательные силы пучения, которые возникают вследствие примерзания вспучивающегося грунта к стенкам фундамента. Считается, что эти силы, величина которых в 5—10 раз меньше сил, действующих на подошву, прикладываются к боковой поверхности заглубленной части фундамента и уравновешиваются весом здания (рис. 4).

Фундаменты в слабопучинистых грунтах Фундаменты на среднепучинистых грунтах
Рис. 1. Фундаменты в слабопучинистых грунтах (размеры в мм): А — из щебня (кирпичного боя, гравия) с проливкой цементным раствором; Б — из монолитного бетона; В — из красного кирпича; Г — из бутобетона, бутовой кладки; 1 — песчаная подготовка; 2 — щебень (кирпичный бой, гравий); 3 — монолитный бетон; 4 — бутовая кладка; 5 — бетонная подготовка; 6 — красный кирпич; 7 — цоколь; 8 — отмостка.  Рис. 2. Фундаменты на среднепучинистых грунтах (размеры в мм): А — незаглубленный под легкие строения; Б — малозаглубленный из блоков с монолитной обвязкой; 1 — песчано-гравийная смесь; 2 — монолитный железобетон; 3 — блоки ФС-6. 
Фундаменты в сильнопучинистых грунтах Рис. 3. Фундаменты в сильнопучинистых грунтах (размеры в мм): А — из монолитного железобетона; Б — из кирпичных блоков с армированными ленточными поясами; В — из монолитного железобетона на подсыпке из уплотненного песка; 1 — подсыпка из песка; 2 — монолитный железобетон; 3 — кирпичные блоки; 4 — армированный ленточный пояс; 5 — гидроизоляция. 

При больших нагрузках на основание подошву фундаментов заглубляют в грунт до того слоя, несущая способность которого позволяет обеспечить допустимые осадки дома. Если эти слои расположены выше расчетной глубины промерзания пучинистого грунта, подошву фундаментов все равно закладывают ниже глубины промерзания, чтобы исключить действие сил морозного пучения. В некоторых случаях допускаются исключения из этого правила, при условии, что силы морозного пучения уравновешиваются весом здания. Строительные нормы предусматривают при этом дополнительные меры, снижающие вредное влияние пучения грунта. К таким мерам относятся:

  • замена пучинистого грунта на непучинистый (песок);
  • покрытие поверхности фундаментов в пределах слоя замерзающего грунта консистентной смазкой или полимерной пленкой;
  • засоление грунта веществами, не вызывающими коррозии бетона и арматуры.

Большинство этих мер противоречит экологическим требованиям, к которым в недалеком прошлом в нашей стране длительное время не прислушивались. Строительные технологии малоэтажных индивидуальных домов основывались на тех же правилах, что и многоэтажное строительство. Считалось, что если нагрузки на грунт небольшие, то и фундаменты должны быть меньших размеров. Последствия таких просчетов давали о себе знать перекошенными стенами, трещинами и даже полным разрушением зданий.

Подробнее рассмотрим процессы, возникающие при эксплуатации зданий облегченной конструкции. Фундаменты подобных зданий сооружены по массовой технологии установки стандартных блоков типа ФБС (или ФЛ) (рис. 5). Такие фундаменты по сей день используются индивидуальными застройщиками, в том числе и для домов облегченной конструкции.

Если для компенсации сил морозного пучения не хватает веса здания, то верхняя часть фундамента в зимний период поднимается вместе с грунтом за счет касательных сил морозного пучения. В это же время нижние блоки остаются на месте, так как силы морозного пучения на них не действуют. В результате между лентами фундаментных блоков образуются щели, в которые попадает грунт обратной засыпки. Весной, когда действие сил морозного пучения прекращается, фундаменты опускаются на свое место. Но так как между блоками находится осыпавшийся грунт, то занять свое первоначальное место блоки уже не могут. Причем из-за того, что грунт осыпается неравномерно, осадка блоков тоже происходит неравномерно. В результате лента фундамента становится перекошенной, а вместе с ней перекашиваются стены дома. Деформации пучения повторяются с годовой цикличностью и со временем накапливаются. В течение нескольких сезонов такие деформации становятся значительными, что влечет за собой образование трещин как в ленте фундамента, так и в стенах дома.

Воздействие на фундамент сил пучения Деформации фундаментов сборного типа при промерзании пучинистого грунта
Рис. 4. Воздействие на фундамент сил пучения: А — подошва фундамента находится в пределах глубины промерзания; Б — при размещении подошвы фундамента регулярно отапливаемого дома ниже -глубины промерзания; В — при размещении подошвы фундамента неотапливаемого дома ниже глубины промерзания; 1 — фундамент; 2 — цоколь; 3 — обратная засыпка; δ — нормальные силы пучения; t — касательные силы пучения; N — нагрузка от дома; df — глубина промерзания; d'f — глубина промерзания отапливаемого дома; dsf — глубина промерзания неотапливаемого дома; dr — глубина траншеи; hf — деформация пучения грунта; Su — величина перемещения фундамента.  Рис. 5. Деформации фундаментов сборного типа при промерзании пучинистого грунта: N — нагрузка от дома; df— глубина промерзания; Su — величина перемещения фундамента; hf — деформация пучения грунта; 1, 2 — перемещения грунта обратной засыпки в зазоры между блоками. 

Из всего вышесказанного можно сделать вывод, что ленточные фундаменты из фундаментных блоков для домов каркасной конструкции не только неэкономичны, но и при высокой пучинистости грунта опасны. Сам собою напрашивается вывод, что целесообразнее всего такие дома сооружать на столбчатых фундаментах с глубиной заложения ниже расчетной точки промерзания грунта. Такое конструктивное решение имеет под собой достаточно веское экономическое обоснование: дешевый дом — дешевый фундамент. Но такой коммерческий подход ничего не имеет общего со строительным искусством. Конечно, на непучинистых грунтах это правило вполне справедливо. Однако при строительстве на грунтах, степень пучения которых велика, такое строительство может привести к непредсказуемым последствиям.

Касательные силы морозного пучения поднимают столбчатые фундаменты вместе с легким каркасным домом. Причем высота подъема столбов в разных частях дома может быть различной. К примеру, в местах, где возле дома скопилось много снега, глубина промерзания грунта намного меньше, чем в местах, где снеговой покров небольшой. Важную роль играет и место расположения фундаментного столба. Например, на фундаменты под перегородками в отапливаемом доме вообще не действуют силы морозного пучения. В результате внутренние фундаменты не поднимаются вместе с наружными столбами. Из-за неравномерного перемещения фундаментных столбов под внутренними и наружными стенами в зимнее время может образоваться перекос всего здания.

Кроме того, чтобы преодолеть силы трения между грунтом и стенами фундаментных столбов во время прекращения действия сил морозного пучения, веса каркасного дома бывает недостаточно. Да и скважина под поднявшимся фундаментным столбом может быть засыпана грунтом. Поэтому весной здание не возвращается в свое первоначальное положение, и перекос становится остаточным. Причем, высота перекоса на каждом фундаменте может быть различной. В жесткой конструкции рубленых домов это явление менее заметно, чем в более подвижной конструкции каркасных и каркасно-щитовых домов. С годами перекос усиливается и эксплуатационные характеристики дома снижаются. Между стенами и потолком образуются щели, изоляция стен нарушается. В результате чего натопить такой дом становится невозможно. Кроме того, нарушается и звукоизоляция ограждающих конструкций здания.

К одной из самых распространенных ошибок, которые допускают при строительстве фундаментов под дома каркасной конструкции, относится отсутствие жесткой пространственной связи между фундаментами под наружные и внутренние стены. В этом случае перекосы стен под различными частями дома возникают в результате разности действия сил морозного пучения на фундаменты. Первыми признаками таких деформаций будут заклинивание дверей и створок окон. Особенно это опасно при наличии в доме печи. В этом случае перекосы могут вызвать трещины в дымоходах со всеми вытекающими отсюда последствиями. К перекосам и деформациям приводит отсутствие жесткой связи между фундаментами под основной дом и фундаментами под примыкающие строения (веранда, галерея, крыльцо и т.п.). В этом случае деформации примыкающих частей дома будут значительно больше деформаций основной его части.

Основные типы фундаментов лёгких каркасных домов

Столбчатые фундаменты каркасных домов могут использоваться при отсутствии пучинистых грунтов. Экономическая целесообразность таких фундаментов очевидна. Конструктивная простота, небольшая стоимость снизит затраты нулевого цикла и сведет к минимуму стоимость одного квадратного метра жилья. Если учесть, что стоимость нулевого цикла в общем объёме строительных работ может достигать 25% и более, то экономичные методы строительства целиком и полностью себя оправдывают. Кроме того, применение столбчатых фундаментов вдвое снижает продолжительность работ за счёт использования средств малой механизации и сокращает построечную трудоёмкость. Положительным свойством столбчатых фундаментов является то, что грунты основания под отдельностоящими опорами работают лучше, чем под сплошными фундаментами. Вследствие этого снижается давление на грунт, отчего вероятность осадок снижается.

Однако и здесь часто допускают ошибки, которые сказываются на эксплуатационных характеристиках дома. Одной из таких ошибок является отсутствие связи столбчатого фундамента с каркасом здания. В результате замораживания и размораживания грунта при сезонных колебаниях температур наружного воздуха может произойти потеря устойчивости фундаментных столбов. При этом фундаментные столбы наклоняются, сдвигаются, а иногда и падают.

Столбы фундаментов устанавливают по всему периметру здания с интервалом 2—3 м, в зависимости от несущей способности основания. При этом обязательна установка столбов в углах здания и в местах пересечения несущих стен (рис. 1).

Варианты расстановки столбчатых фундаментов Деревянный столбчатый фундамент
Рис. 1. Варианты расстановки столбчатых фундаментов. 

Рис. 2. Деревянный столбчатый фундамент: Вариант А: 1 — столб из бревна; 2 — гидроизоляция; 3 — бетонная опора; 4 — песчаная подушка; Вариант Б: 1 — столб из бревна; 2 — гидроизоляция; 3 — скоба; 4 — деревянная крестовина; 5 — бетонная опора; 6 — песчаная подушка. 

Деревянный столбчатый фундамент Буронабивной фундамент с чехлом из асбестоцементной трубы
Рис. 3. Деревянные столбчатые фундаменты (размеры в мм): 1 — антисептированное покрытие; 2 — обшивка; 3 — деревянный стул; 4 — крестовина с подкосами; 5 — гидроизоляция; 6 — забирка. 

Рис. 4. Буронабивной фундамент с чехлом из асбестоцементной трубы: 1 — асбестоцементная труба; 2 — арматура; 3 — бетон; 4 — буровая скважина. 

Свайные фундаменты Схемы забивки свай

Рис. 5. Свайные фундаменты (размеры в мм): А — с высоким сборным ростверком; Б — с низким монолитным ростверком; 1 — железобетонная свая; 2 — грунт; 3 — цокольная панель; 4 — сборный железобетонный оголовник; 5 — плита перекрытия подвальной части здания. 

Рис. 6. Схемы забивки свай: А — рядовая схема; Б — спиральная; В — секционная. 
Столбчатый фундамент на песчаной подушке Столбчатый фундамент на песчаной подушке

Рис. 7. Столбчатый фундамент на песчаной подушке: 1 — цоколь; 2 — подсыпка; 3 — слой щебня или кирпичного боя толщиной 20 см с проливкой раствором; 4 — песчаный фундамент; 5 — ширина фундамента; 6 — уровень заложения; 7 — глиняный замок. 

Рис. 8. Столбчатый фундамент на песчаной подушке (размеры в мм): 1 — кирпичный столб 380x380; 2 — песчаная подушка; 3 — уплотненная засыпка; 4 — бетонная прослойка; 5 — подкладка; 6 — отмостка; 7 — каркасная стена; 8 — забирка из кирпича. 

Конструкции столбчатых фундаментов могут быть различными и зависят они от технологической оснащенности производителя работ. Это могут быть деревянные столбчатые стулья (рис. 2, 3), буронабивные сваи (рис. 4), свайные фундаменты (рис. 5) или одна из современных конструкций столбчатых фундаментов, которые разработаны специалистами ряда институтов для малоэтажного домостроения. Схемы забивки свай для фундаментов даны на рис. 6. На участках с суглинистыми или глинистыми (связанными) грунтами под щитовые дома целесообразно делать столбчатые фундаменты на песчаной подушке (рис. 7). Кирпичные или бутобетонные столбы устанавливают в местах пересечения стен и под углами здания. Устанавливают их преимущественно на однородных грунтах, где глубину заложения принимают минимальной, равной 0,6—0,8 м.

Делают это следующим образом. В траншеи засыпают песок толщиной 40—60 см и уплотняют его. Затем укладывают железобетонные плиты толщиной 10 см размером 50x50 см или 60x60 см с шагом 2,4—6 м, а на них устанавливают бетонные или кирпичные столбики сечением 38x38 см. Высоту столбиков принимают из условия, что пол дома должен быть на 0,75...1,05 м выше планировочных отметок наружного грунта (рис. 8). Столбы связывают между собой кирпичной забиркой, получая таким образом законченную конструкцию нулевого цикла. Общий вид нулевого цикла дома с кирпичными столбчатыми фундаментами показан на рис. 9. На всех четырех сторонах цокольной части нужно оставить отверстия отдушин, предназначенные для вентиляции подпольного пространства. Отверстия отдушин можно закрыть щелевым кирпичом или вентиляционными решетками, защищая подпольное пространство от нашествия грызунов.

При слабых, неоднородных и сжимаемых грунтах рекомендуют ленточно-столбчатые фундаменты. Для этого по песчаной подушке толщиной 40—50 см, отсыпаемой с уплотнением в траншеи, выполняют монолитную железобетонную ленту сечением 20—40 см. Эта лента обеспечивает равномерные деформации здания, не допуская перекосов силовой схемы каркаса. По ней устанавливают бетонные или кирпичные столбики сечением 38x38 см с шагом 2,4—3,6 м. Глубину траншеи принимают равной 0,5—0,6 м (рис. 10). Между столбиками выкладывают кирпичную забирку, закрывающую подполье дома от продувания и снежных заносов. Брусья нижней обвязки связывают между собой и фундаментными столбами в жесткую систему, что предотвращает боковые сдвиги каркаса.

Ленточные фундаменты мелкого заглубления устраивают на грунтах средней и высокой степени пучинистости. При этом лента под наружные и внутренние стены должна быть соединена в единую пространственную раму. Конструкция фундамента мелкого заложения по существу представляет собой жесткую раму, которая каждый год в зимне-весенний период «плавает» вместе с относительно легким домом. В качестве такой рамы выступает бетонный или железобетонный ленточный фундамент, уложенный на подушку из непучинистого материала, уменьшающего величину и неравномерность перемещений фундамента. При таком конструктивном исполнении сокращается расход бетона на 50—80% по сравнению с заглубленным фундаментом. А трудозатраты по сооружению нулевого цикла сокращаются на 40—70%. Варианты мелкозаглубленных фундаментов показаны на рис. 11.

В зимне-весенний период фундамент вместе с грунтом поднимается вверх, а после оттаивания грунтов становится в исходное положение. При этом исключается накопление деформаций в конструктивных элементах здания. В этом заключается принципиальное различие взаимодействия с пучинистым грунтом мелкозаглубленных и заглубленных фундаментов.

Индивидуальные застройщики очень часто используют так называемый щелевой метод сооружения ленточных фундаментов. Для этого в связанных грунтах прорывают траншею заданной ширины и глубины, армируют и заполняют бетоном. Такие фундаменты экономичны, так как не требуется опалубка, для сооружения которой затрачиваются средства и время. Кроме того, при этом выполняется минимум земляных работ и не требуется обратная засыпка грунта. Щелевой метод сооружения фундаментов эффективен в местах, где пучение грунта практически отсутствует. На пучинистых грунтах экономия может обернуться другой стороной. Из-за полного контакта ленты фундамента с грунтом силы морозного пучения неизбежно приведут к деформациям фундамента, а вследствие этого и к деформациям всей надземной части здания. Поэтому в последнем случае целесообразнее ленту фундамента бетонировать в опалубке (рис. 12), а пазухи между грунтом и фундаментом засыпать непучинистым грунтом.

Нулевой цикл дома с кирпичными столбами внутри Ленточно-столбчатый фундамент на песчаной подушке
Рис. 9. Нулевой цикл дома с кирпичными столбами внутри: 1 — кирпичные столбы; 2 — основание печи (510x865 мм); 3 — засыпка песком (200 мм); 4 — отмостка; 5 — уступ (загладить раствором под углом 45 град.); 6 — балка нижней обвязки каркаса дома; 7 — вентиляционное отверстие; 8 — проем для использования в хозяйственных целях; 9 — цоколь.  Рис. 10. Ленточно-столбчатый фундамент на песчаной подушке (размеры в мм): 1 — кирпичные столбы; 2 — ж/б плиты столбов; 3 — ж/б ленточного фундамента; 4 — песчаные подушки столбов; 5 — песчаная подушка ленточного фундамента; 6 — гидроизоляция; 7 — каркас стены. 
Технология изготовления опалубки цоколя Мелкозаглубленные фундаменты

Рис. 12. Технология изготовления опалубки цоколя: 1, 2 — внутренние щиты опалубки; 3, 4 — наружные щиты; 5 — замок; 6 — гвозди; 7 — штыри; 8 — вентиляционная вставка; 9 — сетка; 10 — гвозди; 11 — фиксатор из проволоки; 12 — нижняя распорная вставка; 13 — верхняя распорная вставка; 14 — арматура цоколя; 15 — верхняя стяжка; 16 — накладки. 

Рис. 11. Мелкозаглубленные фундаменты: А — незаглубленный фундамент — цоколь; Б— мелкозаглубленный фундамент; 1 — фундаментный столб без заглубления; 2 — мелкозаглубленный столб; 3 — отмостка; 4 — противопучинная подушка; 5 — обратная засыпка. 

Опалубку для монолитного фундамента изготавливают из обрезных досок, чтобы между ними не было щелей. Если имеется возможность, то для опалубки лучше применять инвентарные щиты, использование которых сократит время на изготовление щитов и снизит трудовые затраты. Пиломатериалы, применяемые для изготовления опалубки, подбирают из хвойных пород. Допускается использование лиственных пород древесины (осина, ольха и т.д.) для изготовления креплений и распорок. Ширина досок не более 150 мм, а их толщина должна быть одинаковой, и они должны быть сырыми. Сухие доски впитывают влагу из бетона, тем самым снижая его прочность. При необходимости лицевую сторону опалубки облицовывают металлическими листами или фанерой. Для уменьшения сцепления опалубки с бетоном лицевую поверхность установленной опалубки рекомендуется покрывать смазкой, в качестве которой используют известковое молоко, водный раствор жидкой глины, отработанные минеральные масла и т.д. Внутренняя облицовка опалубки позволяет выполнить лицевые стороны фундамента с достаточно высокой чистотой поверхности.

При раскреплении опалубки нужно следить за тем, чтобы все крепежные элементы (колья, распорные планки и т.п.) располагались вне пространства, в которое должен укладываться бетон. Если этого не сделать, то извлечь крепежные элементы из тела фундамента после твердения бетона будет уже невозможно. И чем точнее будет установлена опалубка, тем ровнее будет «тело» фундамента. Ровные стороны фундамента особенно важны для надземной его части — цоколя, внешний вид которого играет не последнюю роль в архитектурном оформлении здания в целом.

Простой бетон хорошо воспринимает нагрузки, направленные на сжатие, но плохо-направленные на растяжение и изгиб. Этот недостаток бетона исправляется его армированием отдельными металлическими стержнями или специально для этого сваренными каркасами из арматурной стали гладкого или периодического профиля. При правильном соотношении вяжущих, заполнителей и арматуры получается мощная конструкция, способная выдержать очень большие нагрузки. Железобетонный фундамент не боится местных просадок грунта, надежно удерживая ограждающие конструкции здания.

Для конструкции каркаса требуется арматура диаметром 10—14 мм, которую перед установкой очищают от грязи, ржавчины и других посторонних включений. По своему назначению арматура в железобетонных конструкциях разделяется на рабочую и распределительную. Рабочая арматура воспринимает нагрузки внешние и нагрузки от собственной массы конструкции. Распределительная арматура обеспечивает совместную работу всего арматурного каркаса путем распределения нагрузок между стержнями рабочей арматуры. Распределительная арматура соединяется с рабочей при помощи сварки, реже — при помощи проволочной скрутки. Перед укладкой стержни арматуры окрашивают и загибают по углам. Для подготовки арматурных стержней в домашних условиях можно воспользоваться простым приспособлением. Для этого в деревянную колоду или пень забивают два костыля гребнями друг к другу. Костыли располагают таким образом, чтобы между ними проходил арматурный прут.

Смещение арматурных стержней при их установке в опалубку не должно превышать 1/5 наибольшего диаметра стержня. Отклонения от проектной толщины защитного слоя бетона не должно превышать 3 мм для защитного слоя бетона толщиной 15 мм и менее 5 мм для защитного слоя толщиной более 15 мм. При установке арматуры необходимо произвести проверку опалубки и устранить выявленные дефекты.

Бетонирование фундамента ведется слоями с уплотнением каждого слоя вибраторами или штыкованием. Самым надежным методом уплотнения бетонной смеси считается вибрирование. Для этого используют глубинные (внутренние), площадочные (поверхностные) и наружные вибраторы, применение которых зависит от вида конструкции. Вибрирование снижает силу сцепления между зернами бетонной смеси, и она хорошо уплотняется. Продолжительность вибрирования зависит от пластичности бетонной смеси. Чрезмерное вибрирование бетонной смеси недопустимо, так как может привести к ее расслоению.

Уложенную бетонную смесь выдерживают при соблюдении требуемого температурно-влажностного режима (18—25°С), предохраняют от ударов, сотрясений и других механических воздействий, способных разрушить структуру бетона. Свежеуложенный бетон до достижения 75% проектной прочности следует оберегать от воздействия ветра, мороза и прямых солнечных лучей. Для поддержания температурно-влажностного режима в летнее время свежеуложенный бетон укрывают влагоемкими покрытиями (рогожа, мешковина, плотная ткань, опилки и т.д.) и поливают водой. В жаркую погоду водой поливают и опалубку. Частота полива влагоемких покрытий бетона зависит от конкретных климатических условий, но в любом случае она должна быть такой, чтобы поверхность бетона находилась во влажном состоянии. Процесс схватывания бетона продолжается довольно длительное время. Однако самым ответственным промежутком времени считается первая неделя после бетонирования. В этот период нельзя допускать, чтобы бетон быстро высыхал, особенно под лучами палящего солнца. От действия солнечных лучей или от ветра бетон быстро теряет влагу и в его массиве появляются трещины.

Фундаменты под садовые домики

В строительстве небольших дачных домиков возможно применение различных конструкций фундаментов. Здесь же рассмотрены простейшие фундаменты, которые можно выполнить собственными силами. Из практики установлено, что для садовых домиков площадью 6x6 м размер столбов можно принимать 40x40 или 50x50 см, а высоту - по проекту здания. При этом глубина заложения фундамента должна быть 50 — 70 см. Для вентиляции подполья желательно оставлять просвет между грунтом и нижним венцом обвязки. Заполнение между столбами можно производить деревянными щитами, асбоцементными плитами или кладкой в полкирпича. Заполнение поднимается от уровня земли или отмостки на 10 — 15 см (рис. 1). Как вариант, столбчатые опоры могут выполняться из двух плит и металлической трубы или другого профиля металла. Конструкция сваривается, устанавливается на опорную плиту и засыпается дренирующим грунтом (песком или мелким гравием). Схемы устройства мелкозаглубленных фундаментов показаны на рисунках.

Схема устройства мелкозаглубленного фундамента Схема устройства мелкозаглубленного фундамента

Рис. 1. Схема устройства мелкозаглубленного фундамента: 1 — труба d = 100 мм (4") l = 1,2; 2 — труба d = 55 мм (2"), l = 50 см; 3 — сварка; 4 — обвязка дома; 5 — опорная плита 50*50*10 см; 6 — песок; 7 — отмостка; 8 — кирпичная облицовка; 9 —  анкер; 10 —  стальная плита 40*40*1 см; 11 —  уголок 40*40*5 мм; l = 2 м; УГВ —  уровень грунтовых вод; 12 —  просвет 10 см 

Рис. 2. Схема устройства мелкозаглубленного фундамента: 1 —  труба d = 100, 120, 150 мм; 2 —  труба d = 50 мм, l = 50 см; 3 —  железобетонная плита; 4 —  стальная плита 40*40*1 см; 5 —  песок; 6 —  железобетонный блок-свая 30*30 см; 7 —  отмостка; 8 —  анкер; 9 —  сварка; УГВ —  уровень грунтовых вод  

После удаления растительного слоя, отрывки котлована на необходимую глубину устраивают песчаную подушку. Затем укладывают железобетонный или бетонный пояс (рис. 2) или отдельные куски железобетонных изделий. На них устанавливают металлическую трубу диаметром 100— 150— 200 мм и сверху кладут железобетонные или металлические опорные плиты (рис. 3). Для предупреждения сдвига верхняя плита и труба соединяются анкерами (приваренными или съемными).

Возможно вместо металлической трубы использовать отходы обычных асбоцементных или керамических труб. При малом диаметре их связывают проволокой в пакеты и заполняют бетоном. После твердения бетона пакеты погружают в грунт на подготовленное основание.

При сооружении фундаментов должны быть приняты меры к водоотводу от зданий. Карнизы дома желательно вывести на 0,6 —  0,8 м и обязательно делать водоотводные желоба с последующим отводом воды в дренажные устройства. Подполье должно быть хорошо проветриваемое, для чего со всех сторон делают жалюзийные решетки.

На садовых участках целесообразно делать столбчатые фундаменты, которые располагаются в углах здания, на пересечении стен и местных нагрузок. Для предохранения их от замачивания грунтовыми и атмосферными водами сооружение следует ставить на высоком фундаменте, выполнить подсыпку из песка с уклоном 0,03— 0,05, а отмостку шириной до 1 м.

Столбчатые незаглубленные и мелкозаглубленные фундаменты на песчаной подушке

Рис. 3. Столбчатые незаглубленные и мелкозаглубленные фундаменты на песчаной подушке: а незаглубленный вариант: 1 —  обвязка дома; 2 —  железобетонный блок 60*60*30 см; 3 —  отмостка; 4 —  песок; 5 —  дренажная труба; УГВ —  уровень грунтовых вод;
б —  малозаглубленный вариант: 1 —  труба d = 100 мм, l = 1,2 м; 2 —  труба d = 50 мм, l = 50 см; 3 —  обвязка дома; 4 —  сварка; 5 —  опорная плита; 6 —  отмостка; 7 —  песок; УГВ —  уровень грунтовых вод

Глубина заложения фундаментов под наружные стены при всех грунтах должна быть не менее 0,5 м от поверхности планировки. Основание по всей площади сооружения должно быть сложено из грунтов однородного напластования. Если под домом будут залегать различные грунты, это обстоятельство следует учитывать при выборе конструкции и типа фундамента.

Площадь опорных плит, оснований столбов с достаточной точностью можно рассчитать, имея в виду, что на них действует только статическая сила. Поэтому во всех случаях следует рекомендовать устройство песчаной подушки и засыпки вокруг опорных плит и столбов. Размер опорной плиты-подошвы столба с достаточной точностью можно рассчитать по упрощенной формуле:

E = P1/(n*R)

где P1 —  вес дома, при определении которого следует учитывать и вес оборудования, передающего нагрузки на пол-фундамент (печь, ванна (с водой) и другие нагрузки), кг; n —  количество опор; R —  расчетное сопротивление на грунт, кг/см2.

При расчете массы здания можно исходить из следующего объемного веса строительных материалов: лес круглый —  700 кг/м3, пиломатериал —  600 кг/м3; кирпич красный —  3600 кг на 1000 шт., силикатный —  3500 кг, щебенка из кирпича —  1200 кг/м3; бетон (с красным щебнем) —  1800 кг/м3; железобетонные изделия —  2400 кг/м3; рулон рубероида —  25 кг, кровельное железо —  4 кг/м2, шифер —  8 кг/м2, 1000 шт. черепицы —  2800 кг, стекло оконное (толщиной 1,5 мм) —  4 кг/м2, объемная масса песка —  1,67 т/м3, удельная масса песка —  2,68 т/м3.